�

InterWaveTM’s Driver Development Kit

Rev. 1.0

Draft

Advanced Micro Devices, Inc.

This is a draft document whose contents are subject to change.

�TABLE OF CONTENTS

� TOC \o "1-3" �INTRODUCTION TO THE INTERWAVE DDK	� GOTOBUTTON _Toc321218680 � PAGEREF _Toc321218680 �334��
SUPPORTED COMPILERS	� GOTOBUTTON _Toc321218681 � PAGEREF _Toc321218681 �334��
DDK INCLUDE AND SOURCE FILES	� GOTOBUTTON _Toc321218682 � PAGEREF _Toc321218682 �445��
DDK DATA TYPES	� GOTOBUTTON _Toc321218683 � PAGEREF _Toc321218683 �556��
BASIC STRUCTURE OF A DDK PROGRAM	� GOTOBUTTON _Toc321218684 � PAGEREF _Toc321218684 �121212��
Initializing the DDK and the InterWave Hardware	� GOTOBUTTON _Toc321218685 � PAGEREF _Toc321218685 �131314��
Registering Callback Functions for Interrupt Events	� GOTOBUTTON _Toc321218686 � PAGEREF _Toc321218686 �131314��
Establishing a DMA and IRQ Interface to the InterWave Hardware.	� GOTOBUTTON _Toc321218687 � PAGEREF _Toc321218687 �141415��
CREATING DDK LIBRARIES FOR YOUR C COMPILER.	� GOTOBUTTON _Toc321218688 � PAGEREF _Toc321218688 �161617��
Creating DDK Libraries for BORLAND C.	� GOTOBUTTON _Toc321218689 � PAGEREF _Toc321218689 �161617��
Creating DDK Libraries for Microsoft C	� GOTOBUTTON _Toc321218690 � PAGEREF _Toc321218690 �171717��
Creating DDK Libraries for WATCOM C	� GOTOBUTTON _Toc321218691 � PAGEREF _Toc321218691 �171718��
Creating DDK Libraries for METAWARE’S High C	� GOTOBUTTON _Toc321218692 � PAGEREF _Toc321218692 �181718��
Creating DDK Libraries for SEMANTEC C	� GOTOBUTTON _Toc321218693 � PAGEREF _Toc321218693 �181819��
THE PLUG AND PLAY INTERFACE	� GOTOBUTTON _Toc321218694 � PAGEREF _Toc321218694 �191919��
ACCESSING REGISTERS IN THE INTERWAVE HARDWARE	� GOTOBUTTON _Toc321218695 � PAGEREF _Toc321218695 �201920��
Normal or Internal Decoding	� GOTOBUTTON _Toc321218696 � PAGEREF _Toc321218696 �202020��
External Decoding	� GOTOBUTTON _Toc321218697 � PAGEREF _Toc321218697 �212021��
Board Initialization under Plug and Play	� GOTOBUTTON _Toc321218698 � PAGEREF _Toc321218698 �212121��
ACCESSING LOCAL MEMORY	� GOTOBUTTON _Toc321218699 � PAGEREF _Toc321218699 �222122��
Local Memory Configuration	� GOTOBUTTON _Toc321218700 � PAGEREF _Toc321218700 �222222��
Accessing Local Memory	� GOTOBUTTON _Toc321218701 � PAGEREF _Toc321218701 �232323��
Programmed I/O Cycles to Local Memory	� GOTOBUTTON _Toc321218702 � PAGEREF _Toc321218702 �252525��
Sixteen-Bit Access to Local Memory	� GOTOBUTTON _Toc321218703 � PAGEREF _Toc321218703 �282728��
Sixteen-Bit DMA Access to Local Memory in GUS Mode	� GOTOBUTTON _Toc321218704 � PAGEREF _Toc321218704 �282828��
Sixteen-Bit DMA Access to Local Memory in Enhanced Mode	� GOTOBUTTON _Toc321218705 � PAGEREF _Toc321218705 �292929��
Sample Code: DMA Transfer to Local Memory	� GOTOBUTTON _Toc321218706 � PAGEREF _Toc321218706 �302929��
Interleaved DMA Transfers	� GOTOBUTTON _Toc321218707 � PAGEREF _Toc321218707 �333233��
Local Memory Management	� GOTOBUTTON _Toc321218708 � PAGEREF _Toc321218708 �343333��
Local Memory Management in GUS Mode.	� GOTOBUTTON _Toc321218709 � PAGEREF _Toc321218709 �343334��
Local Memory Management in Enhanced Mode	� GOTOBUTTON _Toc321218710 � PAGEREF _Toc321218710 �353434��
PROGRAMMING THE SERIAL EEPROM	� GOTOBUTTON _Toc321218711 � PAGEREF _Toc321218711 �353435��
On-Board Programming	� GOTOBUTTON _Toc321218712 � PAGEREF _Toc321218712 �353435��
Plug and Play Resource Map	� GOTOBUTTON _Toc321218713 � PAGEREF _Toc321218713 �373636��
PROGRAMMING THE INTERWAVE CODEC/MIXER	� GOTOBUTTON _Toc321218714 � PAGEREF _Toc321218714 �373637��
Codec Interrupt Structure	� GOTOBUTTON _Toc321218715 � PAGEREF _Toc321218715 �373637��
Codec DMA Transfers	� GOTOBUTTON _Toc321218716 � PAGEREF _Toc321218716 �403939��
Programming The Codec Timer	� GOTOBUTTON _Toc321218717 � PAGEREF _Toc321218717 �434342��
APPENDIX A DDK QUICK REFERENCE GUIDE	� GOTOBUTTON _Toc321218718 � PAGEREF _Toc321218718 �464544��
APPENDIX B DDK FUNCTION REFERENCE	� GOTOBUTTON _Toc321218719 � PAGEREF _Toc321218719 �525150��
APPENDIX C MIXER AND ANALOG FUNCTIONS	� GOTOBUTTON _Toc321218720 � PAGEREF _Toc321218720 �106104101��
APPENDIX D SAMPLE PLUG-AND-PLAY RESOURCE MAP	� GOTOBUTTON _Toc321218721 � PAGEREF _Toc321218721 �107105102��
�
� TOC \o "1-3" �
INTRODUCTION TO THE INTERWAVE DDK	� GOTOBUTTON _Toc322112822 � PAGEREF _Toc322112822 �34��
SUPPORTED COMPILERS	� GOTOBUTTON _Toc322112823 � PAGEREF _Toc322112823 �34��
DDK INCLUDE AND SOURCE FILES	� GOTOBUTTON _Toc322112824 � PAGEREF _Toc322112824 �45��
DDK DATA TYPES	� GOTOBUTTON _Toc322112825 � PAGEREF _Toc322112825 �56��
BASIC STRUCTURE OF A DDK PROGRAM	� GOTOBUTTON _Toc322112826 � PAGEREF _Toc322112826 �1212��
Initializing the DDK and the InterWave Hardware	� GOTOBUTTON _Toc322112827 � PAGEREF _Toc322112827 �1314��
Registering Callback Functions for Interrupt Events	� GOTOBUTTON _Toc322112828 � PAGEREF _Toc322112828 �1314��
Establishing a DMA and IRQ Interface to the InterWave Hardware.	� GOTOBUTTON _Toc322112829 � PAGEREF _Toc322112829 �1415��
CREATING DDK LIBRARIES FOR YOUR C COMPILER.	� GOTOBUTTON _Toc322112830 � PAGEREF _Toc322112830 �1617��
Creating DDK Libraries for BORLAND C/C++.	� GOTOBUTTON _Toc322112831 � PAGEREF _Toc322112831 �1617��
Creating DDK Libraries for Microsoft Visual C++	� GOTOBUTTON _Toc322112832 � PAGEREF _Toc322112832 �1717��
Creating DDK Libraries for WATCOM C/C++32	� GOTOBUTTON _Toc322112833 � PAGEREF _Toc322112833 �1718��
Creating DDK Libraries for METAWARE’S High C	� GOTOBUTTON _Toc322112834 � PAGEREF _Toc322112834 �1718��
MetaWare’s High C/C++ supports DOS extenders other than Phar Lap; however the InterWave DDK was only tested with Phar Lap under this compiler.	� GOTOBUTTON _Toc322112835 � PAGEREF _Toc322112835 �1819��
Creating DDK Libraries for SYMANTEC C/C++	� GOTOBUTTON _Toc322112836 � PAGEREF _Toc322112836 �1819��
THE PLUG AND PLAY INTERFACE	� GOTOBUTTON _Toc322112837 � PAGEREF _Toc322112837 �1919��
ACCESSING REGISTERS IN THE INTERWAVE HARDWARE	� GOTOBUTTON _Toc322112838 � PAGEREF _Toc322112838 �1920��
Normal or Internal Decoding	� GOTOBUTTON _Toc322112839 � PAGEREF _Toc322112839 �2020��
External Decoding	� GOTOBUTTON _Toc322112840 � PAGEREF _Toc322112840 �2021��
Board Initialization under Plug and Play	� GOTOBUTTON _Toc322112841 � PAGEREF _Toc322112841 �2121��
ACCESSING LOCAL MEMORY	� GOTOBUTTON _Toc322112842 � PAGEREF _Toc322112842 �2122��
Local Memory Configuration	� GOTOBUTTON _Toc322112843 � PAGEREF _Toc322112843 �2222��
Accessing Local Memory	� GOTOBUTTON _Toc322112844 � PAGEREF _Toc322112844 �2323��
Programmed I/O Cycles to Local Memory	� GOTOBUTTON _Toc322112845 � PAGEREF _Toc322112845 �2525��
Sixteen-Bit Access to Local Memory	� GOTOBUTTON _Toc322112846 � PAGEREF _Toc322112846 �2728��
Sixteen-Bit DMA Access to Local Memory in GUS Mode	� GOTOBUTTON _Toc322112847 � PAGEREF _Toc322112847 �2828��
Sixteen-Bit DMA Access to Local Memory in Enhanced Mode	� GOTOBUTTON _Toc322112848 � PAGEREF _Toc322112848 �2929��
Sample Code: DMA Transfer to Local Memory	� GOTOBUTTON _Toc322112849 � PAGEREF _Toc322112849 �2929��
Interleaved DMA Transfers	� GOTOBUTTON _Toc322112850 � PAGEREF _Toc322112850 �3233��
Local Memory Management	� GOTOBUTTON _Toc322112851 � PAGEREF _Toc322112851 �3333��
Local Memory Management in GUS Mode.	� GOTOBUTTON _Toc322112852 � PAGEREF _Toc322112852 �3334��
Local Memory Management in Enhanced Mode	� GOTOBUTTON _Toc322112853 � PAGEREF _Toc322112853 �3434��
PROGRAMMING THE SERIAL EEPROM	� GOTOBUTTON _Toc322112854 � PAGEREF _Toc322112854 �3435��
On-Board Programming	� GOTOBUTTON _Toc322112855 � PAGEREF _Toc322112855 �3435��
Plug and Play Resource Map	� GOTOBUTTON _Toc322112856 � PAGEREF _Toc322112856 �3636��
PROGRAMMING THE INTERWAVE CODEC/MIXER	� GOTOBUTTON _Toc322112857 � PAGEREF _Toc322112857 �3637��
Codec Interrupt Structure	� GOTOBUTTON _Toc322112858 � PAGEREF _Toc322112858 �3637��
Codec DMA Transfers	� GOTOBUTTON _Toc322112859 � PAGEREF _Toc322112859 �3939��
Programming The Codec Timer	� GOTOBUTTON _Toc322112860 � PAGEREF _Toc322112860 �4342��
APPENDIX A DDK QUICK REFERENCE GUIDE	� GOTOBUTTON _Toc322112861 � PAGEREF _Toc322112861 �4544��
APPENDIX B DDK FUNCTION REFERENCE	� GOTOBUTTON _Toc322112862 � PAGEREF _Toc322112862 �5150��
APPENDIX C MIXER AND ANALOG FUNCTIONS	� GOTOBUTTON _Toc322112863 � PAGEREF _Toc322112863 �104101��
APPENDIX D SAMPLE PLUG-AND-PLAY RESOURCE MAP	� GOTOBUTTON _Toc322112864 � PAGEREF _Toc322112864 �105102��
�
�__
1. INTRODUCTION TO THE INTERWAVE DDK
__

The InterWave Driver Developer’s Kit is a set a low-level functions written in C and intended for the development of programs for InterWave-based sound boards. The DDK allows applications to be developed with little knowledge of the InterWave IC. The two primary goals of the DDK are:

To provide an easy to use interface (API-like layer) to any InterWave-based board. This set of drivers could be used to write full fledge sound applications or it could be used to write small applications to aid the debugging of prototype boards (OEMs).

To serve as a tutorial guide to the InterWave IC. The DDK source files are written in C and some in-line assembly language and are well commented to make it easy for a developer to become familiar with the internals of the chip. Sample code is provided with the DDK that should shed light on how the InterWave IC is programmed to performed certain functions.

The DDK has proven to be of invaluable help at Advanced Micro Devices as a test-development tool. A great amount of diagnostics software has been written with it that helped debug prototype boards as well as the InterWave IC itself. This is a task that the DDK is particularly well suited to.
__
2. SUPPORTED COMPILERS
__

The InterWave’s set of low level drivers have been compiled and tested using the following popular C compilers for the IBM PC and compatibles:
�
BORLAND C++ 4.0
WATCOM C/C++ Version 9.5
MICROSOFT Visual C++ Version 1.0
METAWARE’S HIGH C/C++ Version 3.21 (Not yet)
SYMANTEC’S C++ Version 6.1 (Not yet)
�__

3. DDK INCLUDE AND SOURCE FILES
__

�The following files contain the C language source code to all DDK drivers:

iwinit.c�This file contains the definitions for DDK functions that perform InterWave board initialization-related tasks.�����iwdma.c �This file contains the definitions for DDK functions that perform DMA-related tasks. This is the DMA module of the DDK.�����iwpnp.c�This file contains the definitions for DDK functions that perform plug-and-play related tasks. These functions can prove very valuable in debugging Plug and Play functionality. Also, some of these functions are instrumental in the detection of the InterWave hardware in a PC.�����iwirq.c�This file contains the definitions for DDK functions that perform IRQ-related tasks. The handlers for the AUDIO functions on the IC are defined here. These handlers will route the corresponding interrupt event to an application defined callback if one was registered. �����iwcodec.c�This file contains the definitions for DDK functions that pertain to the InterWave’s codec.�����iwmem.c�This file contains the definitions for DDK functions that perform local memory management tasks. These functions allow an application to allocate and de-allocate Local Memory as needed while keeping track of existing memory.�����iwvoice.c�This file contains the definitions for DDK functions that perform voice-related tasks.�����iwutil.c�This file contains the definitions for DDK functions that perform general tasks. These functions can be called by other DDK functions as well as application programs.��
These are the files from which the DDK libraries are built. Refer to Appendix Bthe DDK reference section below for a description of each DDK function.

The following include files are provided with the DDK. Of these, you only need to include iwdefs.h and iwprotos.h within your source file.

iwdefs.h�All symbolic constants used by the DDK are defined here. Browse through this file and become acquainted with it. Always include this file in your source code. �����iwprotos.h�All prototypes for DDK functions are defined here. Always include this file in your source code.�����iwcc.h�This file contains definitions that allow the user to compile DDK source files with the compilers mentioned above. �����iwtypes.h�This file defines the data types described below.�����iwcore.h�This is a very important file containing the definition of the global variable iw. This variable is initialized to default I/O, DMA and IRQ resources that correspond to the Gravis UltraMax sound board.��
(�Always include iwdefs.h, iwprotos.h and iwcore.h. The other two files will be automatically included.��
__

4. DDK DATA TYPES
__

As a matter of convenience and for readability purposes the InterWave’s DDK has defined certain data types. These are all defined within the file iwtypes.h. The following data types are defined:

BYTE�unsigned char. Use this type to define variables 8 bits wide. It is normally used to store the contents of a register within the InterWave IC. �����WORD�unsigned short. Use this type to define variables 16 bits wide. The InterWave IC has a 16-bit data port (I16DP) with which this type of variables are normally used. �����PORT�unsigned short. Defined mostly for readability reasons and equivalent to the type WORD.�����ADDRESS�unsigned long. Use this type to define variables 32-bit wide. This type is normally used for local memory addresses.�����DWORD�unsigned long. Defined mostly for readability reasons and otherwise equivalent to the type ADDRESS.�����PVI�pointer to an interrupt vectorhandler. �����PFV�pointer to a function which returns void.�����PFI�pointer to a function which returns int.�����DMA�Structure type defined to facilitate the transfer of data between the InterWave hardware and PC memory. The following members are defined within DMA structure variables:

page. Member of type PORT which stores the address of the corresponding DMA channel’s page register.

addr. Member of type PORT which stores the address of the corresponding DMA’s channel base address register. This register stores the base offset to PC memory where the transfer is to take place. The page register together with the address register make up the physical address of the data.

count. Member of type PORT which stores the address of the corresponding DMA channel’s base count register in the DMA controller. The base count register is loaded with the number of bytes to be transferred minus one.

single. Member of type PORT which stores the address of the DMA controller’s Single-Mask Bit register. Writing to this register allows individual DMA channels to be disabled.

mode. Member of type PORT which stores the address of the DMA controller’s Mode Register. This is where you specified the direction of transfer, whether you need to place the channel in auto-initialization mode.

clear_ff. Member of type PORT which stores the address of the clear byte pointer flip flop in the DMA controller. This flip flop allows the reading or writing of the base address, current count and the base count registers. When the flip flop is cleared, the next I/O access at this port affects the lower byte. This I/O access toggles the flip flop and the next access will affect the higher byte.

disable. Member of type BYTE holds the bit value needed to disable the corresponding DMA channel by setting the mask for that channel at port single.

enable. Member of type BYTE that holds the bit value needed to enable the corresponding DMA channel by clearing the mask for that channel at port single.

write. Member of type BYTE that holds the bit pattern to indicate the transfer of data from a peripheral to PC memory via the corresponding DMA channel.

read. Member of type BYTE that holds the bit pattern to indicate the transfer of data from PC memory to a peripheral via the corresponding DMA channel.

cur_mode. Member of type BYTE that holds the bit pattern to be written to port mode.

cur_page. Member of type WORD that points to the current DMA page in PC memory. This member is dynamically updated as needed during DMA transfers.

cur_addr. Member of type WORD that holds the base address for the current DMA transfer.

amnt_sent. Member of type WORD that holds the value indicating the number of bytes sent during a transfer.

cur_size. Member of type WORD that holds the value indicating the number of bytes to be sent during the current transfer.

nxt_page. Member of type WORD that points to the next page in cases when a DMA transfer had to be split into two transfers because of a DMA page overrun.

nxt_addr. Member of type WORD that points to the next base address in cases when a DMA transfer had to be split into two transfers because of a DMA page overrun.

nxt_size. Member of type WORD that holds the size of the next transfer in cases when a DMA transfer had to be split into two transfers because of a DMA page overrun.

channel. Member of type BYTE that holds the number of the DMA channel. This could be 0-7.

type. Member of type BYTE that indicates the type of transfer to be carried out. Set this to the following symbolic constants as needed: 1) DMA_READ if you wish to transfer data from PC memory to a peripheral; 2) DMA_WRITE if you wish to transfer data from a peripheral to PC memory; 3) AUTO_READ if you wish to transfer data from PC memory to a peripheral with auto-initialization of the DMA channel; 4) AUTO_WRITE if you wish to transfer data from a peripheral to PC memory with auto-initialization of the DMA channel.

pc_ram. Member of type void far * that holds the physical address in PC memory where the data are to be written or read.

local. Member of type ADDRESS representing the DMA start address in the local memory of the InterWave board.

flags. Member of type BYTE to indicate the status of corresponding DMA channel. When the channel is busy the DDK indicates this by ORing symbolic constant DMA_BUSYPENDING. If the DMA transfer needs to be broken up into two transfers, the DDK indicates this by ORing in DMA_SPLIT.�����IRQ�structure type defined to facilitate programming the interrupt controller. The following members are found within a structure of this type:

mask. Member of type BYTE holding the bit mask for the corresponding interrupt request channel.

spec_eoi. Member of type BYTE holding bit pattern for specific end of interrupt for the corresponding IRQ channel.

ocr. Member of type BYTE containing address of the Operation Command Register.

imr. Member of type BYTE allocated to hold the address of the Interrupt Mask Register (OCW1). This address is 0xA1 for the slave and 0x21 for the master. �����IWAVE�structure type containing information which is critical to the operation of most DDK functions. Among the data stored here are the I/O space the InterWave hardware is configured for, the addresses of callbacks to be called by interrupt handlers upon the occurrence of certain events, flags indicating the status of DMA operations, etc. The members are:

pcodar. Base port for the Codec and Index register.
p2xr. Compatibility base port. This is the address of register UMCR.
p3xr. MIDI and Synthesizer base port.
p401ar. Base address for the MPU401 emulation device. This address corresponds to the emulation address of register UGP1I.
p201ar. Address of the Game Logical device. It is normally set to the legacy position 201h.
pataar. Base address for the ATAPI interface I/O space.
pnprdp. If the IC is in Plug and Play mode, this member contains the address of the READ DATA PORT as defined by the Microsoft Plug and Play ISA Specification 1.0A.
igidxr. Port address of the General Index Register at P3XR+3.
i16dp. Port address of 16-bit data port at P3XR+4.
i8dp. Port address of 8-bit data port at P3XR+5.
cdatap. Port address of codec data port at PCODAR+1. All codec indexed registers are accessed via this data port.
csr1r. Codec status register 1 at PCODAR+2.
cxdr. Address of codec FIFOs at PCODAR+3. On a write data is placed in the playback FIFO. On a read, data is removed from the record FIFO.
gmxr. Port address of the MIDI Control (GMCR) or Status (GMSR) registers at P3XR+0.
gmxdr. Port address of the MIDI Transmit (GMTDR) or Status (GMRDR) registers at P3XR+1.
lmbdr. Port address of byte data port to local memory at P3XR+7.
svsr. Port address of the Synth Voice Select Register at P3XR+2.
csn. Member of type BYTE that holds the Card Select Number assigned to the InterWave board. This can be 10-255.
cmode. This argument reflects the current mode of codec operation. It should always be set to either CODEC_MODE1, CODEC_MODE2 or CODEC_MODE3. The default is CODEC_MODE3. This argument is updated whenever the codec mode is changed via function IwaveCodecMode. cmode. This argument reflects the current mode of codec operation. It should always be set to either CODEC_MODE1, CODEC_MODE2 or CODEC_MODE3. The default is CODEC_MODE3. This argument is updated whenever the codec mode is changed via function IwaveCodecMode.
dma1play_chan. Member of type BYTE. It represent the number of the playback DMA channel associated with local memory DMA and codec record DMA. This is the number stored in the register PUD1SI.
dma2rec_chan. Member of type BYTE. It represent the number of the record DMA channel associated with codec playback DMA. This is the number stored in the register PUD2SI..
ext_chan. Member of type BYTE. It represent the number of the DMA channel for the external device. This is the number stored in the register PRDSI.
play_dma1. Pointer to a structure of type DMA allocated to the local memory DMA and codec record DMAplayback channel. This pointer is initialized to NULL but should be set to NULL if playback your application can register a structure here via IwaveRegisterDMA or IwaveSetInterface.DMA is not used.
rec_dma2. Pointer to a structure of type DMA allocated to the codec playback DMArecord channel. This pointer is initialized to NULL but your application can register a structure here via IwaveRegisterDMA or IwaveSetInterface.This pointer should be set to NULL if record DMA is not used.
synth_irq. The IRQ number assigned to the sSynthesizer, codec and compatiblity function. It is the number stored in the register PUI1SI.
midi_irq. The IRQ number assigned to the MIDI functions. It is the number stored in the register PUI2SI.
emul_irq. The IRQ number assigned to the Blaster/AdLib emulation functions. It is the number stored in the register PSBISI.
mpu_irq. The IRQ number assigned to the MPU401 emulation function. It is the number stored in the register PMISI.
synth. Pointer to a structure of type IRQ defined to provide IRQ services for allocated to the synthesizer, codec and compatibility functions. This pointer is initialized to NULL but your application can register a structure here via IwaveRegisterIRQ or IwaveSetInterface.
midi. Pointer to a structure of type IRQ defined to provide IRQ services for the allocated to the MIDI functions. This pointer is initialized to NULL but your application can register a structure here via IwaveRegisterIRQ or IwaveSetInterface.
voices. Number of currently active voices.
vendor. Fisrt 32 bits of the PnP serial identifier stored in the serial EEPROM. This member is initialized at start-up time by IwaveOpen.
free_mem. Member of type ADDRESS containing the address of the first free local memoryLM block. This applies to the local memory manager functions.
reserved_mem. Member of type DWORD that specifies the amount in bytes of local memory reserved by an application.
smode. This variables is set to either GUS_MODE or ENHANCED_MODE depending of the mode of operation of the InterWave hardware.
size_mem. Member of type DWORD that specifies the actualtotal amount of local memory in kilobytes available to the applicationattached to the InterWave. In GUS mode, the maximum possible is 1MB. This member is initialized at start up time by IwaveOpen.
old_synth_vect. Member of type PVI to hold the address of the previous handler in the Interrupt Vector Table of the PC corresponding to the Synth IRQ. This handler must be restored when the DDK application exits.
old_midi_vect. Member of type PVI to hold the address of the previous handler in the Interrupt Vector Table of the PC corresponding to the MIDI IRQ. This handler must be restored when the DDK application exits.
old_ext_vect. Member of type PVI to hold the address of the previous handler in the Interrupt Vector Table of the PC corresponding to the external-device IRQ. This handler must be restored when the DDK application exits.
midi_xmit_func. Member of type PFV that holds the address of a callback function to be called by the IwaveHandler service routine MIDI IRQ handler for the transmit function.
midi_rcv_func. Member of type PFV that holds the address of a callback function to be called by the IwaveHandler service routine MIDI IRQ handler for the receive function.
timer1_func. Member of type PFV that holds the address of a callback function to be called by the IwaveHandler service routine Synth IRQ handler for the AdLibAdlib timer 1 interrupts.
timer2_func. Member of type PFV that holds the address of a callback function to be called by the IwaveHandler service routine Synth IRQ handler for the AdLibAdlib timer 2 interrupts.
codec_dma_func. Member of type PFV that holds the address of a callback function to be called by the IwaveHandler service routine Synth IRQ handler for the codec DMA interrupts.
codec_timer_func. Member of type PFV that holds the address of a callback function to be called by the IwaveHandler service routine Synth IRQ handler for the codec timer interrupts.
codec_play_func. Member of type PFV that holds the address of a callback function to be called by the IwaveHandlerSynth service routineIRQ handler for the codec playback path interrupts.
codec_rec_func. Member of type PFV that holds the address of a callback function to be called by the IwaveHandler service routine Synth IRQ handler for the codec record path interrupts.
play_dma_func. Member of type PFV that holds the address of a callback function to be called by the IwaveHandler service routine Synth IRQ handler for the Local Memory DMA interrupts.
rec_dma_func. Member of type PFV that holds the address of a callback function to be called by the IwaveHandler service routine Synth IRQ handler for the Local Memory DMA interrupts.��
�__
5. BASIC STRUCTURE OF A DDK PROGRAM
__
Listing 1X below depicts the basic skeleton of a DDK program which may be used as a starting point for the development of an application. The piece of code shown initializesintializes the DDK and the InterWave sound board to operate in enhanced mode with 3214 active voices to start with. Most of the application code would follow the call to IwaveOpen and may also contain calls to other DDK functions. The final call to IwaveClose is essential and must always be carried out.

(�#include “iwdefs.h” /* Need these three files */
#include “iwprotos.h”
#include “iwcore.h”
 ...
void main()
{
 DMA dma1; /* Optional - Code record and local memory DMA*/
 DMA dma2; /* Optional - Codec play DMA */
 IRQ irq1; /* Optional - Synth, codec, compatibility IRQs */
 IRQ irq2; /* Optional - MIDI IRQs */
 ...

 IwaveOpen(32,ENH_MODE,0L); /* Init iwIwave Struct and InterWave*/
 IwaveSetInterface(&dma1,&dma2,&irq1,&irq2); /*Optional */
 ... /* Application Code */
 IwaveClose(); /* Close application */
}���Listing 1. Basic Structure of a DDK Application��
The listing above includes optional statements for a DMA and IRQ interface to the InterWave hardwarerepresents the bare minimum. If an application does not handle InterWave IRQs (it could be based entirely on polling) or does not employ DMA (it could be based entirely on programmed I/O) then these optional statements could be dropped. Note that the listing it includes three header files. These files are all DDK header files you will need to include in your applications. and a global structure variable iw which most DDK functions know about . The file iwcore.h defines Tthe variable iw that is initialized by IwaveOpenwill to hold all relevant information about the InterWave boardhardware such as its assigned I/O space, DMA and IRQ channels, application- defined callback vectors, etc . The program should always initialize the DDK as well as the InterWave IC by calling IwaveOpen also prepares the hardware for operationor a similar function. IwaveOpen would normally be matched by an IwaveClose at the end.

A description of all DDK functions is given in Appendix BB.
__

5.1 Initializing the DDK and the InterWave HardwareSound Board.

One of the first things an application should do at start up time is to issue a call to function IwaveOpen which will initialize a communication interface to the InterWave IC on the board. The DDK defines a variable of type IWAVE called iw that most DDK drivers access during execution. This variable is defined and initialized to default values within the file iwcore.h. You must always include this file in your application.

IwaveOpen will the detect the InterWave board and load its configuration data into variable iw. The configuration data is kept within the PnP interface of the IC and it is accessible at any time to software that knows the vendor ID of the board. The DDK requires that you define an environment variable IWAVEID and that you set it to the value of the vendor ID (first 32 bits of the serial identifier) as defined by the PnP ISA Specification 1.0A. This vendor ID is the most reliable means of correctly identifying your board.
One of the first things an application should do at start up time is to issue a call to function IwaveOpen which will initialize a communication interface to the InterWave IC on the board. The DDK defines a variable of type IWAVE called iw that most DDK drivers access during execution. This variable is defined and initialized to default values within the file iwcore.h. You must always include this file in your application.

IwaveOpen will detect the InterWave hardware and load its configuration data into variable iw. The configuration data is kept within the PnP interface of the IC and it is accessible at any time to software that knows the vendor ID of the board. The DDK requires that you define an environment variable IWAVEID and that you set it to the compressed ASCII 7-character string representationvalue of the vendor ID (first 32 bits of the serial identifier) as defined by the PnP ISA Specification 1.0A. This vendor ID is the most reliable means of correctly identifying a PnPyour board.

For details on the initialization performed by IwaveOpen on the InterWave hardware see the description of this function in Appendix B.

__
Registering a Callback Functions for Interrupt Events

Whenever an interrupt event takes place an application may wish to gain control and perform certain actions or tasks depending on the source of the interrupt. In order to do this, the DDK provides the means for an application to register or install callback functions to be entered when particular interrupts occur.

To register a callback, an application could make use of the function IwaveSetCallback described in Appendix B. An alternative way of registering a callback requires the programmer to become familiar with certain members of DDK variable iw. These members were described in section 4 of this document. For instance, to register a callback for interrupt events associated with the codec playback path you could do either of two things:

Issue the call IwaveSetCallback(PlayCallback, CODEC_PLAY_HANDLER) or
Use the assignment iw.codec_play_func=(PFV)PlayCallback

Here, PlayCallback is the name of the callback function. The second call would result in the smaller code but requires that you acquaint yourself with the callback members of iw.

__
5.3 Establishing aRegistering a DMA andor an IRQ Variable StructureInterface to the InterWave Hardware.

If your application needs to conduct DMA transfers between the InterWave hardware and the PC system or service interrupt requests you must register DMA or IRQ variables that will serve as an interface between the application and the InterWave hardware.

The audio logical device of the InterWave IC can be configured to use up to two DMA channels and up to two IRQ channels. The DMA and IRQ channel configuration is reflected in registers UDCI and UICI respectively.

The first IRQ channel, reflected in UICI[2:0], is dedicated to interrupt requests originated in the synthesizer, codec, and compatibility sections of the hardware. The second channel, reflected in UICI[5:3], is dedicated to MIDI interrupts. Note that it is possible to combine all interrupt sources to trigger interrupts via the first channel selected in UICI[2:0] if UICI[6] is set high and UDCI[7] is low. Also, if both UICI[6] and UDCI[7] are set high, all interrupt sources will trigger interrupts via the second channel selected in UICI[5:3]. If you expect you application to handle both channels then define two variables, say irq1 (first channel) and irq2 (second channel) of type IRQ, and register them with the call IwaveRegisterIRQ(&irq1,&irq2) so that the DDK can initialize the IRQ interface. If you are not handling interrupt requests from a particular channel, set the corresponding argument to NULL. For instance, if MIDI interrupts are not handled by your application then issue the call IwaveRegisterIRQ(&irq1,NULL).

The first DMA channel, reflected in UDCI[2:0], is dedicated to DMA requests for the codec record path and local memory. The second channel, reflected in UDCI[5:3], is dedicated to DMA requests from the codec play path. Note that it is possible to combine both DMA channels to route all DMA requests to the first channel selected in UDCI[2:0] if UDCI[6] is set high. If you expect you application to handle DMA requests from both channels then define two variables, say dma1 (first channel) and dma2 (second channel) of type DMA, and register them with the call IwaveRegisterDMA(&dma1,&dma2) so that the DDK can initialize the DMA interface. If you are not handling requests from a particular channel, set the corresponding argument to NULL. For instance, if your application is servicing the codec play FIFO via DMA then issue the call IwaveRegisterDMA(NULL,&dma2) to register the appropriate variable.

If the InterWave hardware has been programmed to route both DMA or both IRQ channels into one channel, the InterWave DDK automatically will detect this and intialize the interface accordingly. If your application will use both DMA and IRQ services you may want to consider function IwaveSetInterface instead of IwaveRegisterDMA and IwaveRegisterIRQ.
__5.4 GUS Compatible Mode versuss. Enhanced Mode
___.

The InterWave IC was designed to support programs written for the Advanced Gravis Ultrasound (GUS) sound boards currently available in the market. However, the InterWave IC provides enhanced features when programmed to be in enhanced mode. For GUS programs to run correctly, the board must be in GUS compatible mode where none of the enhanced features are available.
The InterWave IC was designed to support programs written for the Advanced Gravis Ultrasound (GUS) sound boards currently available in the market. However, the InterWave IC provides enhanced features when programmed to be in enhanced mode. For GUS programs to run correctly, the board must be in GUS compatible mode where none of the enhanced features are available.

(�Note that as most applications are expected to be written to take advantage of the enhanced features of the InterWave IC, future releases of the DDK willdoes not support GUS compatible mode. ��
If you are writing an enhanced mode application you must always ensure that your program places the InterWave board back into GUS compatible mode before terminating so that legacy (old GUS) software can run. Note that the DDK function IwaveClose which you would normally called at the end of your application automatically resets the board back to GUS compatible mode.
If you are writing an enhanced mode application you must always ensure that your program places the InterWave board back into GUS compatible mode before terminating so that legacy (old GUS) software can run. Note that the DDK function IwaveClose, which you would normally call at the end of your application, automatically resets the board back to GUS compatible mode.

6. CREATING DDK LIBRARIES FOR YOUR C COMPILER.

__
6.1 Creating DDK Libraries forunder BORLANDorland C/C++.

Under Borland C/C++ use the make file makeborl that is provided with the DDK. The command line for the make utility that allows you to create a DDK library is make -DMODEL=*x -fmakeborl where *x is one of t,s,m, or l or x for the tiny, small, medium or large memory models and x is for the TNT-DOS extended library respectively.

The library will be created in the current directory. The makeborl file makes the following assumptions:
Your source file directory is c:\iwave\c.
Your include file directory is c:\iwave\h.
Your Bborland C compiler is installed in the c:\bc4 directory.

If any of the above assumptions does not hold true for you, make the necessary modifications to the file makeborl.

The *.obj files from which the library is built will be placed in the current directory but deleted as soon as the library is created. The name of the library will be iwbc*x.lib where *x is one of t,s,m, or l or x as described above.

In order to compile an application with the 32-bit Borland C compiler BCC32, first compile to object code and then link. For instance, to compile the InterWave program peek.c issue the following commands:

�bcc32 -c -Ox -Ic:\iwave\h peek.c��
to generate the .obj file and then

�386link @bcc32.dos peek.obj iwpharl.obj -exe peek��
__
6.2 Creating DDK Libraries forunder Microsoft Visual C.++

Under Microsoft Visual C/C++ use the make file makesoft that is provided with the DDK. The command line for the nmake utility that allows you to create a DDK library is nmake -fmakesoft MODEL=X where X is one of T,S,M or L for the tiny, small, medium or large memory models respectively.

The library will be created in the current directory. makesoftborl makes the following assumptions:
Your source file directory is c:\iwave\c.
Your include file directory is c:\iwave\h.
Your Mmicrosoft compiler is installed in the c:\msvc directory.

If any of the above assumptions does not hold true for you, make the necessary modifications to the file makesoft.

The *.obj files from which the library is built will be placed in the current directory but deleted as soon as the library is created. The name of the library will be iwmscx.lib where x is one of T,S,M, or L as described above.

__
6.3 Creating DDK Libraries forunder WATCOMWatcom C/C++32.

Under Watcom C/C++32 , use the makefile makewat to create a protected mode DDK library iwwc*x.lib where * reflects the memory model and is any of f,s,m,c,l. Follow the instructions within makewat to build a suitable library for your programs. Note that in protected mode, the InterWave DDK’s DMA module works only when using the flat memory model.
__
6.4 Creating DDK Libraries forunder METAWARE’SMetaWare’s High C.

Under MetaWare’s High C/C++, use the following command to compile each of the iw*.c files in the DDK into an *.obj file:

�hc386 -fsoft -c -O3 -Ic:\highc\inc -Ic:\iwave\h c:\iwave\c\iw*.c��
In order to create the library you will need the Phar Lap library utility 386lib.exe. Issue the command:

�386lib iwmw.lib @resp.dat��

In order to compile InterWave DDK programs that hook hardware interrupts you must link in the file iwpharl.obj with your program. Do not use “hand linking” as suggested by the C/C++ User’s Guide to TNT DOS-Extender. Instead, let the High C compile utility call the linker for you. Use the command line :

�hc386 -fsoft -O3 -Ic:\iwave\h iwprog.c iwpharl.obj iwmw.lib��
MetaWare’s High C/C++ supports DOS extenders other than Phar Lap; however the InterWave DDK was only tested with Phar Lap’s TNT DOS Extender under this compiler. Note that the above commands assume your High C compiler is installed in the c:\highc directory and that the DDK source files are in the c:\iwave\c directory.
__
6.5 Creating DDK Libraries forunder SYMANTECSymantec C/C++.

Under Symantec C/C++ use the make file makesym that is provided with the DDK. The command line for the make utility that allows you to create a DDK library is make -fmakesym MODEL=X where X is one of c,s,m,l,x, or p for the compact, small, medium, large, 32-bit DOSX and Phar Lap models respectively.

The library will be created in the current directory. makesym makes the following assumptions:
Your source file directory is c:\iwave\c.
Your include file directory is c:\iwave\h.
Your Symantec C/C++ compiler is installed in the c:\sc directory.

If any of the above assumptions does not hold true for you, make the necessary modifications to the file makesym.

The *.obj files from which the library is built will be placed in the current directory but deleted as soon as the library is created. The name of the library will be iwsc*.lib where * is one of c,s,m,l,x,or p as described above.

7. THEA FEW WORDS ON PLUG AND PLAY INTERFACE.

The InterWave IC is a PnP compliant device capable of being configured by standard PnP software. The PnP protocol will isolate and number each PnP adapter present in a PC system before proceeding to arbitrate and assign resources to them all.

One thing that makes full automation of the configuration processes a very difficult task is the fact that there remains an extensive base of old or legacy adapters or cards which can not report their resource requirements. It is thus imperative that means be provided to inform the standard PnP software of the requirements needed by such cards. This necessitates the intervention of the user which would register the resources used by such old ISA bus adapters and may possibly need to change the configuration of legacy devices in conflict via jumpers. This utility would normally be provided by a vendor in the absence of a PnP manager (such as Intel’s PnP manager) or a PnP BIOS.

In a non-PnP system (system with no PnP manager, BIOS or operating system) the InterWave IC PnP interface would serve as no more than a set of configuration registers providing just a jumperless solution to the automatic configuration problem.
__
8. ACCESSING REGISTERS IN THE INTERWAVE HARDWARE-BASED SOUND CARD.

The InterWave IC provides two I/O-space decoding modes depending on its hardware configuration. These two modes will determine how you will access the registers of the InterWave IC.
__
8.1 Normal or Internal Decoding.

This mode assumes that the IC’s Plug and Play configuration registers have been programmed in order for the InterWave IC to correctly decode its I/O address space. Registers can then be accessed based on the addresses programmed into the PnP address registers.
Normal decoding mode comprises two alternative ways of operation:

System Mode. For situations when a sound board has no Plug and Play serial EEPROM available (or has one that has not yet been programmed) and the Plug and Play isolation protocol must be bypassed. In this mode of operation the software will configure the IC’s PnP registers by the following steps: 1) Place the IC into the isolation mode; 2) Write the Card Select Number to the fixed port 201h; 3) Proceed to configure the logical devices. For sample C code that shows how to initialize the InterWave IC in system mode see listing X.

Card Mode. In this case, a serial EEPROM is available and has been programmed to report the resource requirements of the InterWave sound board. The IC is then in a fully PnP compliant mode and will be expected to participate in the PnP isolation processes. Standard PnP software should be able to configure the board. Board specific configuration must be performed by vendor software (device drivers or boot-time initialization programs).

Note that these two modes are NOT programmable. The hardware could be set up to work in either mode or to switch back and forth between modes via jumpers. See the hardware manual if you need to know the specifics of how this is done.

__
8.2 External Decoding.

This mode allows accesses to all registers without the need to configure the PnP registers first. The InterWave IC will respond to preset addresses (address bits [5:0]) as specified in tables provided in the programmer’s manual. This decoding mode is provided to facilitate the integration of the InterWave IC into a PCMCIA architecture which does not support Plug and Play.
__
8.3 Board Initialization under Plug and Play.

The initialization of a board based on the InterWave IC at boot time will comprise two phases. These two phases relate first to the programming of all standard PnP configuration registers and second to the programming of certain registersaspects of the InterWave IC in order to leave it in a desired functional state.

Configuration of Standard PnP Registers. These registers are common to all PnP-compliant ISA adapters or devices and must be fully programmed by standard Plug and Play software. This configures the I/O space, DMA and IRQ resources for the InterWave board. Standard PnP software may come in the form of a Plug and Play BIOS, Plug and Play manager, Plug and Play Operating system (Chicago) or vendor supplied software. Advanced Micro Devices provides an initialization program called iwinit.exe that takes care of programming these registers at boot time.

InterWave Specific Configuration. Once the standard PnP registers have been programmed and I/O space as well as DMA and IRQ resources, then certain registers of the IC must be initialized. For instance, the local memory controller must be properly initialized to correctly reflect the amount of DRAM and ROM attached to it. Also the mixer section is properly initialized and the IC is left in GUS compatible mode. All this is done by iwinit.exe.
__
9. ACCESSING LOCAL MEMORY.

__
9.1 Local Memory Configuration

The InterWave IC has an addressing capability of up to 16M. The memory can be distributed among four banks of 4M each. This immense memory capacity allows the storage of great amounts of sound data relieving the use of PC RAM considerably and the need for the time consuming task of repeated file I/O.

The InterWave IC can be used in a sound card with a variety of configurations for its local memory (LM). The LM configuration of a vendor card can be specified in the Local Memory Control Configuration Register (LMCFI) among other things. This register must be loaded with the appropriate information by vendor software at device initialization time; the InterWave IC itself will not detect the amount of memory attached to it. This information is required in order to properly initialize the DDK code within an application. The following table depicts possible configurations for LM.

LMCFI[3:0]�Bank 3�Bank 2�Bank 1�Bank 0�Total��0�-�-�-�256K�256K��1�-�-�256K�256K�512K��2�256K�256K�256K�256K�1M��3�-�-�1M�256K�1.25M��4�1M�1M�1M�256K�3.25M��5�-�1M�256K�256K�1.5M��6�1M�1M�256K�256K�2.5M��7�-�-�-�1M�1M��8�-�-�1M�1M�2M��9�1M�1M�1M�1M�4M��10�-�-�-�4M�4M��11�-�-�4M�4M�8M��12�4M�4M�4M�4M�16M��Table 1. Local Memory Configuration (All values are in bytes)

The default value of LMCFI is 0x0000h and therefore the IC is assumed configured for 256K. LMCFI[3:0] must be set up by the software to reflect the particular configuration of LM attached to the IC. The DDK's function IwaveMemSize returns the total number of Kilobytes of LM attached to the IC whereas IwaveMemCfg determines the actual configuration and sets up the LMCFI register accordingly. See the description of these functions in the DDK section of this manual for details.

(�Vendors of InterWave-based sound boards may have to incorporate some form of IwaveMemCfg into their device drivers or initialization programs as it is quite possible that they will support various of the above configurations on their boards. This would allow end users flexibility in memory upgrades.��
__
9.2 Accessing Local Memory

The following table shows how the InterWave IC translates address written to various address registers (A[23:0]) into real addresses (RLA[23:0]) to select particular DRAM or Local Memory locations. A real address is the bit pattern that the InterWave IC actually puts out in order to access DRAM. A logical address is the bit pattern that is written by software to the address registers. A logical address is in some cases equivalent to a real address.

Enhanced Mode Bit (SGMI[0])�Access Width�SUAI, SASHI, SASLI, SAHI, SALI, SAEHI, SAELI, SEAHI, SEALI, LDSALI, LDSAHI�LDIBI, LMRFAI, LMPFAI, LMALI, LMAHI, SLFOBI��0�8-bit�RLA[23:0]=(0,0,0,0,A[19:0]�RLA[23:0]=A[23:0]��0�16-bit�RLA[23:0]=(0,0,0,0,A[19:18],(A[16:0]*2))�RLA[23:0]=A[23:0]��1�8-bit�RLA[23:0]=A[23:0]�RLA[23:0]=A[23:0]��1�16-bit�RLA[23:0]=(A[22:0]*2)�RLA[23:0]=A[23:0]��Table 2. Local Memory Address Translations

(�It is very important to observe the translations reflected in table 2 above in order to properly access local memory. The software must always perform a translation opposite that done by the InterWave IC for 16-bit accesses. Table 3 shows how to determine the logical addresses (LA) to be written into address registers to take into account the translation by the InterWave IC.��
The table above clearly indicates which registers are affected by the address translations that take place within the InterWave IC. Note that accesses to local memory are carried out by the Synthesizer, the codec (LM FIFOs) or by the software via DMA or programmed I/O. For DMA transfers, the access width is determined by the width of the DMA channel used. Thus DMA channels 4,5,6, or 7 would carry out 16-bit accesses. For synth accesses, the access width is determined by SACI[2]. Table 2 above shows the operations that the InterWave IC performs on the logical addresses stored in the address registers before they become real addresses (RLA). Table 3 shows how the software will determine the logical addresses (LA) to be written to address registers. When accessing local memory via programmed IO (LMAHI,LMALI registers) no translations are necessary.

Enhanced Mode Bit (SGMI[0])�Access Width�SUAI, SASHI, SASLI, SAHI, SALI, SAEHI, SAELI, SEAHI, SEALI, LDSALI, LDSAHI�LDIBI, LMRFAI, LMPFAI, LMALI, LMAHI, SLFOBI��0�8-bit�LA[23:0]=(0,0,0,0,A[19:0]�LA[23:0]=A[23:0]��0�16-bit�LA[23:0]=(0,0,0,0,A[19:18],(A[16:0]/2))�LA[23:0]=A[23:0]��1�8-bit�LA[23:0]=A[23:0]�LA[23:0]=A[23:0]��1�16-bit�LA[23:0]=(A[22:0]/2)�LA[23:0]=A[23:0]��Table 3. Logical Address Generation

Listing 21 below shows the source code for DDK function IwaveAddrTrans which is called by other DDK functions whenever a 16-bit access is being carried out. This function will return a logical address to be written to the appropriate registers.

The structure member smode serves to indicate the mode of operation of the InterWave IC: enhanced or GUS compatible mode. The DDK defines the symbolic constants GUS_MODE and ENH_MODE and smode should be set to one of these.

(�/*///
/ FUNCTION: IwaveAddrTrans()
/
/ PROFILE: This function performs an address translation required for 16-bit DMA channels or 16- / bit synthesizer memory accesses. When in GUS mode (SGMI[ENH}=0) the translation / consists of shifting the first 17 bits to the right while preserving bits 18 and 19. In / enhanced mode, a right shift is required.
///*/
ADDRESS IwaveAddrTrans(ADDRESS local)
{
 if (iw.smode==GUS_MODE)
 return((local&0x000C0000L)|((local&0x0003FFFFL)>>1));
 else
 return(local>>1);
}���Listing 2. Address Translation for 16-Bit Accesses��
__
9.3 Programmed I/O Cycles to Local Memory.

Local Memory can be accessed via programmed IO by first indicating the memory location that we wish to access and then issuing a read or write cycle to the appropriate register. Accessing local memory requires two very simple steps:

Loading the memory address counter. The memory address counter is made up of two registers: LMAHI and LMALI. LMALI must be written with the first 16 bits of the address (A[15:0]). LMAHI specifies the upper portion of the counter A[23:16]. Notice that LMAHI[7:4] (A[23:20]) are reserved if the InterWave IC is in GUS compatible mode.

Executing the IO access. Memory can be accessed one byte at a time via register LMBDR or one word (16-bit) at a time via register LMSBAI.

The following listing shows the C language code for a function that can be used to read memory one byte at a time.

The function takes as argument the address to be read from and returns a byte of data at that address. Notice that LMALI is a 16-bit indexed register which can be accessed at port iw.i16dp. LMAHI is an 8-bit indexed register and it can be accessed at port iw.i8dp. The symbolic constants _LMALI (=0x43) and _LMAHI (=0x44) are indices to these registers which must be written to the register IGIDXR at iw.igidxr in order to select the registers.

(�/*///
/ FUNCTION : IwaveMemPeek()
/
/ PROFILE : This function reads a byte of data from local memory in a card containing the / InterWave board. It does so via LMBDR and the user must specify a local memory / address to read from via argument addr.
///*/
BYTE
IwaveMemPeek(ADDRESS addr)
{
 _poke(iw.igidxr,_LMALI); /* select LMALI */
 _pokew(iw.i16dp,(WORD)addr); /* store A[15:0] */
 _poke(iw.igidxr,_LMAHI); /* select LMALI */
 _poke(iw.i8dp,(BYTE)(addr>>16)); /* store A[23:16] */
 return(_peek(iw.lmbdr)); /* read LMBDR and return */
}���Listing 3. Reading Local Memory��
As shown in the last column of the table, programmed I/O cycles to DRAM are independent of data type as well as mode of operation. That is, the software is not required to perform any special address conversions to access a particular location in DRAM. The address specified by the software (A[23:0]) is mapped directly to a physical address (logical and real address are equivalent).

Downloading or uploading blocks of data via programmed I/O cycles is a very simple operation with the InterWave IC. The DDK provides functions IwavePokeBlock or IwavePokeBlockW and IwavePeekBlock or IwavePeekBlockW that allow a program to read or write memory in a byte or word fashion respectively. These functions make use of the Auto-Increment feature of the InterWave IC (LMCI[0]). Normally when transferring data to/from local memory the transfers take place to/from consecutive memory locations. With the auto increment feature you only need to load a base address into the local memory address counter (LMALI and LMAHI) and this counter will automatically increment with each access into memory. If accessing memory in a bytewise fashion via LMDBI each access will cause the counter to increment by one; 16-bit accesses via LMSBAI will cause the counter to increment by two.

The steps to access chunks of contiguous memory efficiently are as follows:

Turn on the auto increment feature on the InterWave IC by setting LMCI[0] = 1. Also make sure you are accessing DRAM (LMCI[1]=0).

Write the base address to the local memory counter (LMALI and LMAHI). This is the address where the data block starts.

Download or upload the data either via LMBDR (8-bit accesses) or LMSBAI (16-bit accesses).

The following listing shows the source code for function IwavePokeBlockW which can be used to download or write blocks of data via LMSBAI to the InterWave local memory.

(�
void
IwavePokeBlockW(WORD *block, /* pointer to data block */
 DWORD len, / * length of block */
 ADDRESS addr) /* local-memory base address */

{
 BYTE lmci;
 DWORD i;

 _poke(iw.igidxr,_LMCI); /* select LMCI */
 lmci = _peek(iw.i8dp);
 _poke(iw.i8dp,(lmci|AUTOI)&DRAM_IO); /* select DRAM access and auto-increment */

 /*///
 / Set up LM Address Counter
 ///*/

 _poke(iw.igidxr,_LMALI); /* select LMALI */
 _pokew(iw.i16dp,(WORD)addr); /* Lower 16 bits of addr. */
 _poke(iw.igidxr,_LMAHI); /* select LMAHI */
 _poke(iw.i8dp,(BYTE)(addr>>16));

 _poke(iw.igidxr,_LMSBAI); /* select LMSBAI */

 for (i=1L; i<=len; i++)		 /* Poke block in */
 _pokew(iw.i16dp,*block++);

 _poke(iw.igidxr,_LMCI); /* select LMCI */
 _poke(iw.i8dp,lmci); /* restore LMCI */
}���Listing 4. Writing to Local Memory in Auto Increment Mode��
Notice that the function turns on auto incrementing, makes sure that local memory is selected (LMCI[1]=0) , sets the base address into the memory address counter and then places the chunk of data into that space. Notice also that before it exits, the function restores the original contents of register LMCI. IwavePeekBlockW and IwavePeekBlock both can be used to read data from local memory via LMSBAI and LMBDR respectively. Likewise, IwavePokeBlockW and IwavePokeBlock can be used to write data to local memory via LMSBAI and LMBDR respectively.

9.4 Sixteen-Bit Access to Local Memory.

The IC may be operating in either GUS compatible mode (SGMI[0]=0) or in enhanced mode (SGMI[0]=1).

When 16-bit access to DRAM is performed, the software must take the internal address translations within the IC address registers into account.

In GUS mode, only A[19:0] are used giving access to only 1MB of data. The table shows that for a 16-bit Synthesizer access the lower 18 bits of address given to the address registers will be shifted left by one, A[17] will be dropped. A[19:18] will be retained unchanged. This means that the software must carry out the inverse translation before writing the address to the registers. For instance, if the software wants to access location 601E0h, then it should write 500F0h or 700F0h to the address register. This makes it possible to access only 256 KB of data in this mode.

In enhanced mode, the software address conversion should consist of a simple right shift that will be counteracted by the IC for any desired DRAM location.

Notice that all 16-bit accesses to DRAM are always aligned to an even byte.

9.4.1 Sixteen-Bit DMA Access to Local Memory in GUS Mode.

For 16-bit DMA accesses to local memory, the software should specify only A[19:4] when writing to address register LDSALI as the lower address nibble A[3:0] is set to 0000 automatically. Therefore if the application needs to start a transfer at location 601E0 then it should write 500F to LDSALI. This value will be translated as indicated in the above table.

The address translation imposes the restriction that a 16-bit DMA transfer MUST always start at an address aligned to a 32 byte boundary. An 8-bit transfer would always start at an address aligned to a 16-byte transfer. For an 8-bit DMA transfer no reverse translation is needed, e.g., to start a transfer at 601E0h the software would simply write 601Eh to LDSALI. The software need not specify the lower nibble (LDSAHI[3:0]) as this is set to 0000 by the InterWave IC automatically the moment LDSALI is loaded.

�SYMBOL 70 \f "Wingdings"��In GUS mode (SGMI[0]=0), a 16-bit DMA transfer can not cross over a 256KB boundary due to the address translation mechanism.��
__
9.4.2 Sixteen-Bit DMA Access to Local Memory in Enhanced Mode

In enhanced mode, the address translation requires the software to shift the desired address to start the DMA transfer to the right by one. This means that 16-bit DMA transfers are aligned to even byte boundaries. For instance, if the application needs to start a transfer at 0601E0h, it should load 0300F0h into the address register (LDSALI, LDSAHI). An 8-bit transfer is byte aligned and requires no reverse translation by the software. Thus if a 8-bit DMA transfer is desired to be started at 0601E0h the address specified would then be 0601E0h.

Note that the only limitation to the size of a DMA transfer in enhanced mode is the physical presence of DRAM. A 24-bit address can access up to 16M of data samples for 8-bit DMA transfers and up to 8M for 16-bit DMA transfers.

The steps needed to perform a DMA transfer with the DDK are detailed in the software chapter of this guide. There DDK function IwaveDmaXfer is introduced.
__
9.4.3 Sample Code: DMA Transfer to Local Memory.

The following listing details the steps needed to perform a DMA transfer to local memory with the DDK.
�
(�/*//
/ FILE: ldma.c
/ REMARKS: This program is an illustration of the steps needed to conduct a DMA transfer to local memory. Note how the / transfer is described to the DDK, how to register a callback and the DMA and IRQ structures.
//*/
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include "iwdefs.h"
#include "iwprotos.h"
#include "iwcore.h"

BYTE dmaflag=0; /* callback flag */

void DmaCallback()
{
 dmaflag++; /* flag completion of DMA xfer */
}
void main()
{
 IRQ irq1; /* variable for interrupt service */
 DMA dma1; /* variable for DMA service */
 BYTE far *ptr, i;

 IwaveOpen(14,GUS_MODE,0L); * Initialize DDK and sound board */
 IwaveSetInterfaceIwaveInitStructs(&dma1,NULL,&irq1,NULL); /* register DMA and IRQ structures */
 IwaveSetCallback(DmaCallback,PLAY_DMA_HANDLER); /* register callback */

 if ((dma1.pc_ram=farmalloc(16))==NULL) /* allocate memory for data */
 {
 printf("Failed to allocate DMA buffer\n");
 exit(-1);
 }
 dma1.local=0L; /* where data is in Local Mem */
 ptr=(BYTE far *)dma1.pc_ram;

 for (i=0; i<=15; i++) /* load buffer with some data */
 *ptr++=i;
 /* describe transfer to DDK */
 dma1.cur_control|=DMA_DOWN; /* tell InterWave IC to download */
 dma1.cur_control&=~DMA_INV; /* pass samples with no inversion */
 dma1.type=DMA_READ; /* tell DMA controller to download */

 if (IwaveDmaXfer(&dma1,16)!=DMA_OK)
 printf("DMA Failure\n");
 else
 {
 IwaveDmaWait(); /* block until DMA is done */
 ptr=(BYTE far *)dma1.pc_ram;
 for (i=0; i<=15; i++)
 if (IwaveMemPeek(dma1.local+(ADDRESS)i)!=*ptr++)
 {
 printf("DMA Error(%u)\n",i);
 break;
 }
}
 printf("amount sent %u\n",dma1.amnt_sent);
 farfree(dma1.pc_ram); /* free buffer */
 IwaveClose();			 /* close down DDK and board */
}���Listing 5. DMA Transfer to InterWave Local Memory��
The above sample code shows various aspects about programming the InterWave IC with the DDK. Note how after initializing the DDK and InterWave board, the program registers the DMA as well as the IRQ structures via a call to IwaveSetInterfaceIwaveInitStructs. This is important as this is the only means the DDK will know about these structures. The next step is to register a callback for the DMA transfer. Note that it is not necessary for an application to have a callback but it is shown here as an illustration. The callback function DmaCallback will be called by the actual IRQ handler when the transfer is completed. All the callback will do in this program is to set a flag when called; a callback can be defined by the application to do any needed task. The following must be specified to execute a transfertrasnfer to or from local memory:

DMA Buffer. Allocate a DMA buffer and store the pointer in variable pc_ram inside the DMA structure. This is important as this is the address to be used by the DMA controller.

Local Address. Specify the local memory address where the data are to be stored in member local of the DMA structure variable. This is the base address for the data inside the InterWave IC.

DMA Type. Specify the direction of transfer in member type of the DMA structure variable. Set this member to DMA_READ to download data to the InterWave board or set it to DMA_WRITE to upload data from the board to the system. Note that this member is a specification for the DMA controller and not the InterWave IC. If the DMA controller is to operate in auto-initialization mode the symbolic constants to use are AUTO_READ and AUTO_WRITE.

Control Information. Specify the direction of transfer for the InterWave IC and whether to invert the MSB of each sample for local memory DMA. To specify a DMA transfer to the InterWave local memory (download)dowload use the symbolic constant DMA_DOWN; to specify a DMA transfer from the InterWave local memory (n upload) use the symbolic constant DMA_UP. To specify the inversion of the MSB of each sample use the symbolic constant DMA_INV. All this information must be specified in the member cur_control of the DMA variable.

�__
9.5 Interleaved DMA Transfers

It is possible to transfer interleaved data into local DRAM, via DMA, such that the tracks are separated in local memory. For this, it is assumed that n tracks of interleaved audio data are stored in system memory, where n is programmable via LDICI[7:3] to be from 1 to 32. The size of each of the tracks is also programmable via LDICI[2:0], where the number of bytes in each track is 2(9+LDICI[2:0]) (ranging from 512 to 64K). The way in which data is transferred varies, based on the DMA channel width and the

�EMBED MSDraw * mergeformat���

sample width, per the following table.

In order to execute an interleaved DMA transfer, carry out the following steps in the order specified:

Set up the number and the size of tracks, data width and whether to invert the most significant bit of each sample. This can all be done in the same I/O write to LDICI.

Write the base address for the transfer to LDIBI. Notice that the 8 lower bits of this address are zero and you only need to specify bits [23:8].

Trigger the DMA transfer. This is done by setting LDICI[9]=1. This bit is automatically cleared by the hardware once the transfer is completed.

Look into the source code for IwaveDmaIleaved where the previous steps are implemented. Also, see its description in Appendix B.

DMA Chan�SAMPLE SIZE�DESCRIPTION��8-bit �8-bit �Each DMA request-acknowledge cycle transfers one byte that is placed in the current track number; the track number increments with each byte transferred.��8-bit �16-bit �Each DMA request-acknowledge cycle transfers two bytes that are placed at the current track number; the track number increments with each 16-bit value transferred.��16-bit �8-bit �Each DMA request-acknowledge cycle transfers two bytes; the lower byte is placed in the current track number, the track number is incremented and the upper byte is placed in that track; the track number is then incremented again.��16-bit �16-bit �Each DMA request-acknowledge cycle transfers one 16-bit value that is placed in the current track number; the track number increments with each 16-bit value transferred.��

9.6 Local Memory Management.

The DDK provides a set of local memory management functions which allow an application to allocate or deallocate local memory as it runs. These DDK drivers manage available local memoryLM differently depending on whether the InterWave IC is operating in enhanced or GUS-compatible mode.

9.6.1 Local Memory Management in GUS Mode.

In this mode, the maximum possible amount of local memory that is available to an application is 1M. Since 16-bit accesses are restricted to be within the bounds of 256KB, the total amount of available LM will be broken up into pools of 256KB each. A maximum of four 256KB pools is possible. The DDK routines will manage LM by always allocating chunks of memory which are aligned to 32 byte boundaries. This is due to the fact that most usage of LM will occur for DMA transfers which must be aligned to either 16 byte boundaries (8-bit DMA transfers) or to 32 (16-bit DMA transfers). It should be clear that an address aligned to a 32 byte boundary is also aligned to a 16 byte boundary. The DDK routines will always round the requested size up to the next 32 byte boundary in this mode. See the Part 4 of this manual for a detailed description of the LM management scheme in GUS mode.

9.6.2 Local Memory Management in Enhanced Mode.

In this mode, the maximum possible amount of local memory available to an application is 16M if installed. The limitations imposed by the address translation mechanism in the GUS mode are not present in enhanced mode and LM will be managed as a single pool regardless of the amount of memory actually available. In this mode, the memory management DDK routines will always return addresses aligned to even bytes and the requested sizes will always be rounded up to the next even byte.

The DDK provides functions to allocate (IwaveMemAlloc), deallocate (IwaveMemFree) and determine the maximum allocatable block (IwaveMaxAlloc) of local memory. See the software chapter for details.
__
10. PROGRAMMING THE SERIAL EEPROM.

This section describes how to program the serial EEPROM on the InterWave board directly via the InterWave IC. The DDK provides drivers IwavePokeEEPROM and IwavePeekEEPROM which would allow an application to easily program the serial EEPROM. The drivers were written for the KM93C66 256x16 serial EEPROM and compatible units. See listing 6 X for a sample program that writes the contents of a file (containing a PnP resource map) to the serial EEPROM. This program was very useful at AMD during the evaluation of the PnP interface in the InterWave IC.

10.1 On-Board Programming.

The InterWave IC provides the means to program the PnP serial EEPROM on board via register PSECI[3:0]. These four bits are the signals controlling the EEPROM and they are:

PSECI[0] or PSECI[SEDO]. This bit corresponds to signal DO on the KM93C66 and it is where the software reads a data bit from the serial EEPROM.

PSECI[1] or PSECI[SEDI]. This bit corresponds to signal DI on the KM93C66 and it is where the software writes a data bit to the serial EEPROM.

PSECI[2] or PSECI[SESK]. This bit corresponds to signal SK on the KM93C66. This is the serial clock. This bit drives the data in or out the serial EEPROM on the rising edge. This signal should not be driven at a rate higher than 1 MHz.

PSECI[3] or PSECI[SECS]. This bit corresponds to signal CS on the KM93C66. This is the chip select signal.

(�Note that in order for the software to be able to drive the serial EEPROM directly via PSECI it must first set PSEENI[0]=1 and the PnP interface must be in configuration mode.��
(�/*//
/ FILE: eewrite.c
/
/ REMARKS: This program reads the contents of a file containing the data to be stored in the serial EEPROM attached to / the InterWave IC and programs the EEPROM with it. The reads back the data from the EEPROM and verifies / that it was written correctly.
//*/
#include <stdio.h>
#include <conio.h>
#include <stdlib.h>
#include "iwdefs.h"
#include "iwprotos.h"
#include "iwcore.h"

void main()
{
 FILE *fp;
 BYTE eeprom1[512];
 BYTE eeprom2[512];
 WORD i, j, k;
 char yorn;

 fp=fopen("plugplay.txt","r"); /* file where resource map is stored */
 i = 0;
 while (fscanf(fp,"%x\n",&eeprom1[i++])!=EOF);
 for(j=i;j<512;j++) eeprom1[i] = 0;

 IwaveInit(); /* Initialize global var "iw" */
 printf("Warning! This program will write over the contents of the Serial EEPROM\n");
 printf(" located on the InterWave-based sound card. Proceed?(y,n)");
 scanf("%1c",&yorn);
 if(yorn=='y')
 {
 IwaveRegPoke(PLDNI,0x00);
 IwaveRegPoke(PUACTI,0x00);
 IwaveRegPoke(PSEENI,0x01); /* Activate EEPROM control mode */
 PokePSECI(0x00);
 IwavePokeEEPROM(eeprom1); /* Program serial EEPROM */
 IwavePeekEEPROM(eeprom2); /* Read back data from serial EEPROM */
 for(i=0;i<512;i++) /* Verify write operation */
 {
 if (eeprom1[i]!=eeprom2[i])
 {
 printf("Failed. Expected %x, but found %x\n",eeprom1[i],eeprom2[i]);
 break;
 }
 }
 }
}���Listing 6. Sample Code to program the Serial EEPROM��___
10.2 Plug and Play Resource Map.

Appendix DThis section provides a sample resource map that could be used to program a PnP resource map into the serial EEPROM. A PnP resource map is nothing more that data identifying the various logical devices contained within the InterWave IC as well as resources used by these devices. The resources may consist of all supported IO spaces, DMA and IRQ channels, etc.
__
11. PROGRAMMING THE INTERWAVE CODEC/MIXER.

__
11.1 Codec Interrupt Structure

The following interrupts can be generated:

�SYMBOL 183 \f "Symbol" \s 10 \h�	playback and record FIFO I/O threshold reached���SYMBOL 183 \f "Symbol" \s 10 \h�	playback and record sample counters receive an additional sample after the counter has decremented all the way down to zero���SYMBOL 183 \f "Symbol" \s 10 \h�	codec timer decrements to zero��
When any one or more of these events occur CSR1R[0] will be set to a 1; that is CSR1R[0] is the result of ORing together all sources of interrupts within the codec as reflected in CSR3I[6:3] (CSR1R[0]=CSR3I[4]+CSR3I[5]+CSR3I[6]). The codec interrupts are enabled onto the ISA bus by setting CEXTI[1]=1, otherwise they are disabled. Issue the DDK call to IwaveCodecIrq(CODEC_IRQ_ENABLE) if you need to enable codec IRQ onto the PC or IwaveCodecIrq(~CODEC_IRQ_ENABLE) to mask the interrupts from the ISA bus.

Register CSR3I is the register that codec interrupt handlers will normally access to determine the source of the interrupt and to proceed accordingly. The interrupt clearing mechanism consists of writing a zero to the appropriate bit (CSR3I[6:4]) or writing any value to CSR1R (this will clear ALL reporting bits). The DDK provides a handler called IwaveHandler that routes codec interrupt requests as well as interrupt request from all sections of the InterWave IC to the appropriate callbacks. The section of code below corresponds to the code segment within IwaveHandler that routes codec interrupt requests.

(�void
IwaveHandler (void)
{
 ...

 if (_peek(iw.pcodar+0x02)&CODEC_INT) /* Codec Interrupts? */
 {
 BYTE source;

 ENTER_CRITICAL;

 _poke(iw.pcodar,_CSR3I);
 source = _peek(iw.cdatap);
 source&=(CODEC_PLAY_IRQ|CODEC_REC_IRQ|CODEC_TIMER_IRQ);

 if (source&CODEC_PLAY_IRQ)
 {
 iw.codec_play_func(source);
 if ((iw.play_dma2!=NULL)&&(iw.play_dma2->flags&CODEC_DMA)&&(iw.play_dma2->type==DMA_READ))
 {
	iw.play_dma2->flags&=~(DMA_BUSY|CODEC_DMA);
 iw.flags&=~DMA_BUSY;
 iw.play_dma2->amnt_sent+=iw.play_dma2->cur_size;
 }
 _poke(iw.pcodar,_CSR3I);
 _poke(iw.cdatap,CODEC_REC_IRQ|CODEC_TIMER_IRQ);
 }
 if (source&CODEC_REC_IRQ)
 {
 iw.codec_rec_func(source);
 if ((iw.rec_dma1!=NULL)&&(iw.rec_dma1->flags&CODEC_DMA)&&(iw.rec_dma1->type==DMA_WRITE))
 {
 iw.rec_dma1->flags&=~(DMA_BUSY|CODEC_DMA);
 iw.flags&=~DMA_BUSY;
 iw.rec_dma1->amnt_sent+=iw.rec_dma1->cur_size;
 }
 _poke(iw.pcodar,_CSR3I);
 _poke(iw.cdatap,CODEC_PLAY_IRQ|CODEC_TIMER_IRQ);
 }

 if (source&CODEC_TIMER_IRQ)
 {
 iw.codec_timer_func();
 _poke(iw.pcodar,_CSR3I);
 _poke(iw.cdatap,(CODEC_PLAY_IRQ|CODEC_REC_IRQ));
 }
 LEAVE_CRITICAL;
 }
}���Listing 7. Codes’s Interrupt Handler in IwaveHandler (excerpt).��

The handler first determines if a codec interrupt has occurred by looking at CSR1R[0] and if so then determines the source of the interrupt from CSR3I, clear the interrupt reporting bit in CSR3I and issue a call to the appropriate callback. The callback must be registered by the application and its address is stored in a member of structure variable iw. This is where the handler gets the address to execute the callback. In particular there are three callbacks whose addresses are stored within members of the global variable iw:

codec_timer_func(). This member holds the address of the callback for the codec timer. This callback accepts no arguments and returns nothing to the calling program.

codec_play_func(). This member holds the address of the callback for interrupts from the playback path. Notice that this function takes one argument. This argument reflects the contents of CSR3I which hold information such as the interrupt source and FIFO error conditions.

codec_rec_func(). This member holds the address of the callback for interrupts from the record path. Notice that this function takes the same argument as codec_play_func() .

Notice that in each of the three cases above the interrupt reporting bit is always cleared. This is to allow other interrupts to occur.

11.2 Codec DMA Transfers

Separate DMA request signals are generated for the record and playback FIFOs. In systems that can spare only a single DMA channel, a mode is provided that allows the selected DMA channel to function as either a playback or a record channel. In this mode, simultaneous record and playback operation is not possible. CFIG1I specifies the DMA mode.

If the record or playback paths are disabled (via CFIG1I[1:0]) after the associated DMA request signal has become active, the codec will continue the sample transfer (waiting for the acknowledge) as if the path were still enabled. After this final transfer, no other DMA requests will occur.

Normally, DMA requests for the playback FIFO occur one-after-another until that FIFO is full and DMA requests for the record FIFO occur one-after-another until that FIFO is empty. However, in mode 3 the FIFO thresholds can be set to minimum, middle, and maximum via CFIG3I; these specify the point at which the DMA request will become active. In mode 3, when the threshold is middle or maximum, the IC transfers more data; for these, once DMA controller acknowledges the request, samples are transferred until the playback FIFO is full or the record FIFO is empty (depending on which FIFO is being serviced).

For a sample application that shows how to DMA data into or out of the codec see program playwave. This application is a .wav file player and recorder for any InterWave-based sound board. Normally to conduct DMA transfers to/from the codec you would use DDK functions IwavePlayData for playback or IwaveRecordData for recording. For an illustration of the steps these drivers follow in setting up the InterWave IC and DMA controller for a transfer see the following program listing.
�
(�/*//
/ FILE: cplay.c
/
/ REMARKS: This program is an illustration of the steps needed to conduct a DMA transfer to the codec’s playback FIFO. / Note how the transfer is described to the DDK, how to register a callback and the DMA and IRQ structure
/ variables.
//*/
#include <stdio.h>
#include <stdlib.h>
#include <malloc.h>
#include "iwdefs.h"
#include "iwprotos.h"
#include "iwcore.h"

BYTE playflag=0; /* callback flag */

void CodecDma(BYTE source)
{
 if (source&CODEC_PLAY_IRQ)
 playflag++; /* flag completion of DMA xfer */
}
void main()
{
 IRQ irq1;
 DMA dma1;
 BYTE far *ptr, i;

 IwaveOpen(14,GUS_MODE,0L);
 IwaveSetInterfaceIwaveInitStructs(&dma1,NULL,&irq1,NULL); /* register DMA and IRQ structures */
 IwaveSetCallback(CodecDma,CODEC_PLAY_HANDLER); /* register callback */
 IwaveCodecMode(CODEC_MODE2); 	 /* select codec mode */
 IwaveCodecIrq(CODEC_IRQ_ENABLE); / * make sure codec can IRQ */

 if ((dma1.pc_ram=IwaveDmaMalloc(16))==NULL) /* allocate memory for data */
 printf("Failed to allocate DMA buffer\n");
 else
 {
 ptr=(BYTE far *)dma1.pc_ram;

 for (i=0; i<=15; i++) /* load buffer with some data */
 *ptr++=i;
 IwaveDataFormat(BIT8_ULAW,_CPDFI); /* set up data format */
 IwaveCodecCnt(PLAY,16); /* load codec's sample counter */
 dma1.flags|=CODEC_DMA; /* this is a codec DMA xfer */
 dma1.type=DMA_READ; /* tell DMA controller this is a download */

 if (IwaveDmaCtrl(&dma1,16)!=DMA_OK) /* program DMA controller */
 {
 printf("DMA Failure\n");
 goto bye;
 }
 }
 IwaveCodecTrigger(PLAYBACK); /* trigger DMA */
 IwaveDmaWait();		 /* block until DMA is done */
 IwaveStopDma(PLAYBACK); 	 /* disable play path and DMA channel*/
bye:
 printf("playflag: %x\n",playflag); /* flag is set by callback */
 farfree(dma1.pc_ram); / *free buffer */
 IwaveClose();			 /* close down DDK and board */
}���Listing 8. Servicing The Codec’s Playback FIFO via DMA.��

Servicing The Codec FIFOs via Programmed I/O

If you wish to service the codec FIFOs via programmed I/O (PIO) the software should perform the following steps:

1. The software must indicate that it intends to service the codec FIFOs via PIO by setting the applicable bit in CFIG1I (CFIG1I[RFIOS] for record and CFIG1I[PFIOS] for play) to 1. The default for these bits is 0 which means the codec FIFOs are to be serviced via DMA.

2. The software must specify the type of data to be recorded or played back in the appropriate register (CPDFI or CRDFI). It should specify whether the samples are 8 or 16-bit samples, whether they are stereo or mono samples and the desired sample rate.

3. The software must enable the record path or the playback path at register CFIG1I. This enables the playback FIFO to accept samples from the PC or the record FIFO to receive samples from the ADCs and make them available to the software.

4. The software must then closely monitor the status bits in register CSR1R. These bits serve to arbitrate the flow of data between the codec and the PC system. There are four possible cases that may arise depending on the data format:

16-bit Stereo Data. During playback, the software reads CSR1R until there is space available in the playback FIFO, that is, when bit CSR1R[PBA] is 1. If CSR1R[PBA] is 1 on any given read of CSR1R then the software uses the other status bits(CSR1R[PLR, PULB]) to determine the channel (left or right) and whether the upper or lower byte is to be written to the playback FIFO. During record, the software reads CSR1R until the record FIFO has valid data to be read, that is, when bit CSR1R[RBA] is 1. If CSR1R[RBA] is 1 on any given read of CSR1R then the software uses the other status bits (CSR1R[RLR, RULB]) to determine the channel (left or right) and whether the upper or lower byte is to be read from the record FIFO.

16-bit Mono Data. This case is similar to the case for 16-bit stereo data except for the fact the software does not need to check for left and right sample indication. Bits CSR1R[PLR, RLR] will always be 1 as the same samples are used for both channels.

8-bit Stereo Data. During playback, the software reads CSR1R until there is space available in the playback FIFO, that is, when bit CSR1R[PBA] is 1. During record, the software reads CSR1R until the record FIFO has valid data to be read, that is, when bit CSR1R[RBA] is 1. Once CSR1R[PBA] or CSR1R[RBA] is 1 then the software will use bits CSR1R[PLR, RLR] to determine which channel (left or right) the next I/O access will apply to. The software does not need to monitor upper and lower byte indication as bits CSR1R[PULB, RULB] will always be 1.

8-bit Mono Data. This case is similar to the 8-bit stereo data case except that the software does not need to look at CSR1R[PLR, RLR] as these are always 1 for mono data.

5. If recording, the software performs an I/O read from the record FIFO. If playing back, the software performs an I/O write to the playback FIFO.

6. Repeat steps 4 and 5 until all samples are transferred.

(�In Silicon Rev B0, status bits CSR1R[RULB,PULB] may not function correctly when using the 16-bit data (little or big endian) format. To get around this problem, the software should read CSR1R a second time after CSR1R[PBA, RBA] indicate buffer availability and use the value from the second read to get the correct status data.��

__
11.3 Programming The Codec Timer

A programmable 16-bit timer is provided in modes 2 and 3. This timer has approximately a 10 microsecond resolution. It is enabled by CFIG2I[6].

A programmable register pair specifies the 16-bit counter preset (CUTIMI and CLTIMI). The counter decrements every 10 (secs until it reaches zero. At this point, the timer interrupt bit in Status Register 3 (CSR3I) is set, the interrupt bit in Status Register 1 (CSR1R) is set, and an interrupt is generated (if enabled). The counter is reloaded with CUTIMI and CLTIMI on the next timer clock.

The DDK provides various function that allow programming and actually running the timer. These functions are as follows:

IwaveSetTimer. This function loads the timer counter registers CUTIMI and CLTIMI with the specified value. For instance to have the timer decrement to zero in about 0.25 seconds issue the call IwaveSetTimer(25000) to load the appropriate value.

IwaveStartTimer. This function takes no arguments and sets the timer running. The timer is set running by setting CFIG2I[6]=1. Notice that this also enables the timer to generate an interrupt as soon as the counter decrements to zero. If codec interrupts are enabled onto the ISA bus (CEXTI[2]=1), a timer interrupt handler (provided by your application) will be entered

IwaveStopTimer. The timer counter will continue to be reloaded with the contents of CUTIMI CLTIMI and continue to decrement unless explicitly stopped. Issue the call IwaveStopTimer to disable the timer.

A good example of how to program the timer is given in the following listing.
(�/*//
/ FILE: ctimer.c
/ REMARKS: This program will run the codec's timer for 5 seconds. It will program the timer to generate 2 interrupts per / second. A callback is defined and registered.
//*/
#include <stdio.h>
#include <conio.h>
#include "iwdefs.h"
#include "iwprotos.h"
#include "iwcore.h"

BYTE ticks=0x00;
BYTE ctimer=0x00;

void CodecTimer(void) /* Codec Timer callback */
{
 if (++ctimer==4)
 {
 ticks++;
 ctimer=0x00;
 }
}
void main()
{
 IRQ irq1;

 IwaveOpen(14,GUS_MODE,0L); /* Initialize card and DDK */
 IwaveSetCallback(CodecTimer,CODEC_TIMER_HANDLER); /* register timer callback */
 IwaveRegisterIRQIwaveInitStructs(NULL,NULL,&irq1,NULL); /* register IRQ variable */
 IwaveCodecMode(CODEC_MODE3);
 IwaveCodecIrq(CODEC_IRQ_ENABLE); /* make sure codec can IRQ */
 IwaveSetTimer(25000); / * .25 sec to interrupt */
 IwaveTimerStart(); /* set timer off */

 while(!kbhit() && ticks<5) /* wait for 5 secs to pass or key press*/
 { };
 IwaveTimerStop();
 IwaveClose(); /* close down DDK and sound board */
}���Listing 9. Programming The Codec’s Timer��
�
__
APPENDIX A
 SAMPLE PLUG-AND-PLAY RESOURCE MAP

__

The following is a sample resource map for an InterWave board with an EISA-assigned vendor ID of AMD, a vendor assigned product number of 0x2001 and a serial number of 0x11223344. You will change these items to reflect values assigned by your company for your particular board. Note that the checksum in the 9th byte is calculated over all first 8 bytes in a manner prescribed by the Plug and Play ISA specification.

APPENDIX A DDK QUICK REFERENCE GUIDE
__

The following tables contain a brief description of available DDK drivers that could be used to write applications for the InterWave IC. These tables are meant to serve as a quick reference to the DDK functions. For more detailed information on the DDK functions, see the Appendix B where you will find the man pages detailing their syntax .

LOCAL MEMORY MANAGEMENT DRIVERS

No.�FUNCTION�DESCRIPTION��1�IwaveMemAvail�This function returns the total amount of memory in the free chain in the memory pool.��2�IwaveMemAlloc�This function allocates a block of local memory requested by an application.��3�IwaveMaxAlloc�This function returns the size in bytes of the greatest block of memory that can be still be allocated from the local memory pool.��4�IwaveMemFree�This function releases or de-allocates blocks of local memory that were allocated with IwaveMemAlloc.��5�IwaveMemInit�This function initializes the Local Memory so that memory allocation and de-allocation can be performed.��6�IwaveMemPoke�This function pokes a byte of data into InterWave local memory. ��7�IwaveMemPokeW�This function pokes a 16-bit value of data into InterWave local memory.��8�IwaveMemPeek�This function reads a byte of data from InterWave local memory.��9�IwaveMemPeekW�This function reads a 16-bit value from InterWave local memory.��10�IwaveMemSize�This function returns the number of Kbytes available as local memory attached to the InterWave IC.��11�IwaveMemCfg�This function determines the current memory DRAM configuration of the InterWave board and reflects it into register LMCFI.��12�IwavePokeBlock�This function can be used to write entire blocks of data to local memory.��13�IwavePeekBlock�This function can be used to read entire blocks of data from local memory.��14�IwavePokeBlockW�This function can be used to write entire blocks of data to local memory.��15�IwavePeekBlockW�This function can be used to read entire blocks of data from local memory.��

DMA DRIVERS.

No.�FUNCTION�DESCRIPTION��1�IwaveDmaXfer�This function programs the DMA controller, the InterWave IC and triggers a DMA transfer to or from local memory.��2�IwaveDmaWait�This function will block until a specific DMA transfer is completed.��3�IwaveDmaCtrl�This function readies the DMA controller on the PC for an impending DMA transfer.��4�IwaveDmaPage�This function sets up the InterWave IC and then initiates the transfer of up to one DMA page (64K) to or from the InterWave local memory.��5�IwaveDmaIleaved�This function programs the InterWave IC for an interleaved DMA transfer. It triggers the transfer.��6�IwaveDmaPgm�This function does the programming of the DMA controller for an impending DMA transfer.��7�IwaveGetDmaPos�This function reads the count register of the DMA controller to determine its current position in a transfer.��8�IwaveDmaNext�In cases where the data to be DMA'd crosses over one DMA page in PC RAM, this function will be called by the DMA handler to send the data in the second DMA page.��9�IwaveDmaMalloc�This function allows a calling program to allocate memory that lies within a DMA page.��

INITIALIZATION DRIVERS

No.�FUNCTION�DESCRIPTION��1�IwavePnpPing�Function to detect the presence of an InterWave-based board in PnP card mode.��2�IwaveOpen�This function initializes DDK variable iw and prepares the sound board for work.��3�IwaveReset�This function performs a full initialization of the InterWave IC. All interrupts are cleared and voices are initialized to a default value. The input to this function is the number of voices to be initialized.��4�IwaveGusReset�This function resets the InterWave IC to place it in GUS-compatible mode.��5�IwaveClose�This function closes down a DDK application.��6�IwavePnpPower�This function allows the caller to disable major sections of the InterWave IC to prevent them from consuming power and loading the ISA bus. It is assumed that the PnP interface is in configuration mode.��7�IwavePnpKey�This function issues the initiation key that places the PnP interface into configuration mode.��8�IwavePnpSetCfg�This function reads the configuration members of DDK variable iw and configures the I/O space, DMA and IRQ channels on the InterWave IC accordingly.��9�IwavePnpIsol�This function will isolate each PnP card on the system by assigning a unique CSN to each card.��10�IwavePnpIOcheck�This function allows the caller to perform a conflict check on an I/O port or range of ports to be used by a logical device.��11�IwavePnpGetCfg�This function reads the PnP registers of the InterWave card with the specified CSN and fills the configuration members of DDK variable iw.��12�IwavePnpSerial�This function reads the first nine bytes of the data from the serial EEPROM and returns the Vendor ID and the serial number.��13�IwavePnpPeek�This function returns a specified number of resource data bytes from the serial EEPROM.��14�IwavePnpWake�This function issues a WAKE[CSN] command to the InterWave PnP interface.��15�IwavePnpDevice�This function allows the caller to select any of the five logical devices on the InterWave IC.��16�IwavePnpActivate�This function will activate or de-activate any of the five logical devices on the InterWave IC.��17�IwaveSetInterface�This function initializes DMA and IRQ structures defined by the application for interrupt handling and DMA transfers.��18�IwaveRegisterDMA�This function registers DMA structures with the DDK to establish an interface for DMA events.��19�IwaveRegisterIRQ�This function registers IRQ structures with the DDK to establish an interface for IRQ events.��20�IwavePnpBIOS�This function is determines if there is a valid PnP BIOS in the system.��21�IwavePnpBIOS40�If a PnP BIOS system is available, this function will query the BIOS via function 40h to determine the total number of PnP cards in the system as well as the location of the PnP READ DATA PORT.��
SYNTHESIZER DRIVERS

No.�FUNCTION�DESCRIPTION��1�IwaveStartVoice�This function starts a voice playing out of local memory. It assumes that playback rate, volume and balance have all been set.��2�IwaveReadyVoice�This function programs a selected voice on the InterWave for playback. It does NOT start the voice, it just gets it ready.��3�IwaveReadVoice�This function actually returns the address from which a playing voice is currently fetching data.��4�IwaveReadVolume�This function returns the current looping volume value from register SVLI[15:4].��5�IwaveSetVolume�This function sets the current looping volume value in register SVLI[15:4].��6�IwaveStopVolume�This function stops a voice's volume looping.��7�IwaveRampVolume�This function ramps the volume on a specified voice.��8�IwaveSetVoicePlace�This function sets the address location in local memory where a voice fetches data from to a new position.��9�IwaveStopVoice�This function stops a voice's output.��10�IwaveVoicePitch�This routine sets the voice’s playback rate to the specified frequency. Enhanced mode version.��11�IwaveVoiceFreq�Same as IwaveVoicePitch. This is the GUS mode version.��12�IwaveVoicePan�This function sets a voice’s position in the stereo field or pan.��13�IwaveFreeVoice�To free up an allocated voice. It returns a voice for your application to use. If a number is supplied it will attempt to allocate that particular voice. Otherwise, it will allocate the next free voice.��14�IwaveFreeVoices�To free up all previously allocated voices.��15�IwaveVoiceOff�To stop a voice flexibly. If the second argument is FALSE, it will allow the voice to finish the current loop. Otherwise, it will be terminated abruptly. Use IwaveReadVoice if you need to know where the loop stopped.��16�IwaveSetVoiceEnd�This function sets a new end boundary in Local Memory for the specified voice.��17�IwaveSetLoopMode�This routine will set a voice’s looping mode to the one specified.��18�IwaveSynthGlobal�This function can be used to control the global mode of operation of the Synth which affects all voices.��19�IwaveSynthMode�This function can be used to switch the InterWave sound board between GUS compatible mode and enhanced mode. The DDK functions can detect the mode of operation via iw.smode.��
CODEC DRIVERS

No�FUNCTION�DESCRIPTION��1�IwaveCodecMode�This function allows to switch between the different modes of codec operation.��2�IwaveCodecStatus�This function allows an application to retrieve the contents of any of the Codec's Status Registers CSR1R, CSR2I, and CSR3I.��3�IwaveDataFormat�This function allows the caller to set up the data format in registers CPDFI or CRDFI for data to be played or recorded.��4�IwavePlayData�This function sets up and triggers a DMA transfer of data through the codec's playback FIFO.��5�IwaveRecordData�This function sets up and triggers a DMA transfer of data from the codec's record FIFO.��6�IwaveCodecTrigger�This function allows an application to enable the codec record or playback path or both paths.��7�IwaveSetTimer�This function loads a value into the timer counter.��8�IwaveTimerStart�This function sets off the codec timer.��9�IwaveTimerStop�This function turns off the codec timer.��10�IwaveCodecIrq�This function disables or enables the Codec Interrupts onto the ISA bus.��11�IwaveCodecAccess�This function allows the caller to select either programmed I/O or DMA to service the codec FIFOs.��12�IwavePlayAccess�This function has the same functionality as IwaveCodecAccess but applies to the playback FIFO only.��13�IwaveRecordAccess�This function has the same functionality as IwaveCodecAccess but applies to the record FIFO only.��14�IwaveCodecCnt�This function loads the codec's sample counters .��15�IwaveDisableLineIn�This function disables the stereo line-in inputs.��16�IwaveEnableLineIn�This function enables the stereo line-in inputs.��17�IwaveDisableOutput�This function disables the stereo line-out outputs (no sound).��18�IwaveEnableOutput�This function enables the stereo line-out outputs.��19�IwaveEnableMicIn�This function enables the stereo Mic inputs.��20�IwaveDisableMicIn�This function disables the stereo Mic inputs.��21�IwaveLineMute�This function allows the calling program to mute or unmute the
 inputs or outputs to/from the InterWave IC.��22�IwaveLineLevel�This function allows the calling program to control the level of attenuation or gain for inputs or outputs to or from the InterWave IC.��23�IwaveMonoMute�This function allows the calling program to mute or unmute the mono input or output to/from the InterWave IC via CMONOI[7:6].��24�IwaveMonoAtten�This function allows the calling program to set the attenuation level for the mono input via CMONOI[3:0].��25�IwaveInputSource�This function allows the calling program to select among any of several possible sources to the ADC's. This is done via the registers CLICI and CRICI.��26�IwaveInputGain�This function allows the calling program to set a gain level for the left and right sources (CLICI[7:6] or CRICI[7:6]).��27�IwaveSetFrequency�This function allows the calling program to set the either the playback or record sample frequency.��28�IwaveDacAtten�This function allows the calling program to control the level of attenuation to the left or right DACs.��29�IwaveStopDma�This function stops an active DMA transfer to/from the record or playback FIFOs.��
INTERRUPT AND UTILITY DRIVERS

No �FUNCTION�DESCRIPTION��1�IwaveRegPeek�This function returns the value stored in any readable InterWave register.��2�IwaveRegPoke�This function writes a value to any writable InterWave register.��3�IwaveAddrTrans�This function performs an address translation required for 16-bit DMA channels.��4�IwaveDelay�This function introduces a delay or wait for a specified number of milliseconds in a program.��5�IwaveFreeDOS�This function allows WATCOM users to deallocate real mode or DOS memory that was allocated with IwaveAllocDOS.��6�IwaveAllocDOS�This function allows WATCOM users to allocate real mode or DOS memory that a DMA controller needs in order to perform transfers between PC memory and Local Memory.��7�IwaveRealAddr�This function translates the contents of the Synthesizer address registers back into real addresses.��8�IwaveGetAddr�This function retrieves the value of the local memory address counter (LMALI and LMAHI).��9�WriteEnable�This function enables the write operation on the serial EEPROM.��10�WriteOPCode�This function sends the write opcode to the serial EEPROM which must always precede the address that you intend to write to.��11�ReadOPCode�This function sends the read opcode to the serial EEPROM which must always precede the address that you intend to read from.��12�IwavePokeEEPROM�This function allows the caller to program the contents of the serial EEPROM via PSECI[3:0].��13�IwavePeekEEPROM�This function allows the caller to read the contents of the serial EEPROM via PSECI[3:0].��14�GetSamplePosition�This function will read the DMA count register and determine how many bytes have been sent or received to/from the codec FIFOs.��15�_peek�This function will read a hardware port and return its value. An 8-bit port is assumed.��16�_peekw�This function will read a hardware port and return its value. A 16-bit port is assumed.��17�_poke�This function will write a byte to a hardware port. An 8-bit port is assumed.��18�_pokew�This function will write a word to a hardware port. An 16-bit port is assumed.��19�IwaveGetVect�This function returns the address of the current handler for a specified interrupt number .��20�IwaveSetVect�This function installs an interrupt handler into the PC’s IVT.��21�IwaveResetIvt�This function restores the addresses corresponding to the interrupts assigned to the synth and midi. Thus the PC's interrupt vector table (IVT) is restored to its previous state.��22�IwaveSetIvt�This function revectors the IRQ lines assigned to the MIDI and Synthesizer to those specified in variable iw. The interrupt vector table (IVT) is set up with the new vectors.��23�IwaveUmaskIrqs�This function enables IRQs at the PICs. This is done by properly setting the mask register for the particular levels to be enabled at the input to the controller.��24�IwaveMaskIrqs�This function disables IRQs at the PICs. This is done by properly setting the mask register for the particular levels to be disabled at the input to the controller.��25�IwaveHandleDma�This function handles DMA transfers between the PC system and the InterWave IC. The DMA control register LDMACI is read to determine the nature of the transfer.��26�IwaveHandleCodec�This function determines the source of an interrupt within the codec and activates the appropriate registered callback for processing.��27�IwaveHandleVoice�This function handles interrupts caused by a particular synth voice when such voice has either crossed an address boundary or a volume boundary.��28�IwaveHandler�This function is to act as a routing point to service all interrupt requests from the InterWave IC. All applicable callbacks that were registered with the DDK will be called.��29�IwaveSynthHandler�This function is the interrupt handler for the synthesizer, codec, Sound Blaster, AdLib interrupt requests. This is the code that takes over immediately after the interrupt occurs.��30�IwaveMidiHandler�This function is the interrupt handler for the MIDI interrupt requests. This is the code that takes over immediately after the interrupt occurs.��31�IwaveSetCallback�This function installs an application-defined callback for the different interrupt events from the InterWave board.��32�IwaveDefFunc�This is the function that gets registered by default for all interrupt callbacks at init time.��

�
__
APPENDIX A
 SAMPLE PLUG-AND-PLAY RESOURCE MAP

__

The following is a sample resource map for an InterWave board with an EISA-assigned vendor ID of AMD, a vendor assigned product number of 0x2001 and a serial number of 0x11223344. You will change these items to reflect values assigned by your company for your particular board. Note that the checksum in the 9th byte is calculated over all first 8 bytes in a manner prescribed by the Plug and Play ISA specification.

APPENDIX B DDK FUNCTION REFERENCE
__

IwaveCodecCnt

Function
Loads codec’s sample counters.

Syntax
void IwaveCodecCnt(BYTE index, WORD cnt)

FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function loads the codec’s sample counters with a value which is determined from the argument cnt and the format of the data. The codec sample counters are made up of two 8-bit registers: CUPCTI , CLPCTI for playback and CURCTI, CLRCTI for record. The upper byte is always loaded last as it is this action that causes the full 16-bit count to be loaded. The value to be loaded into these counters depends on the format of the data to be transferred through the codec.

Argument(s)ARGUMENT(S):
index�an index to CLPCTI or CLRCTI. This selects either the playback or record sample counter. Set this argument to any of the symbolic constants:
PLAY or _CLPCTI for the playback sample counter
REC or _CLRCTI for the record sample counter
These constants are defined in iwdefs.h.�����cnt�total number of bytes comprising the samples; e.i, the number of samples times the number of bytes per sample. The sample counters will be loaded based on this value and the format set in the data format registers.��

IwaveDataFormat

Function
Sets the playback or record data formats.

Syntax
void IwaveDataFormat(BYTE data, BYTE index)
FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function allows the caller to set up CPDFI and CRDFI registers to select data format of the data to be played or recorded. The first argument should reflect the data format and whether the data is stereo. This value will be set in CPDFI[7:4] or CRDFI[7:4]. As an illustration , the call IwaveDataFormat(BIT8_ULAW | STEREO, _CRDFI) sets the record data Format to Stereo, 8-bit (-law. You must keep in mind that when the codec is in modes 2 or 3 the data format is specified in CPDFI register for the playback path and in the CRDFI register for the record path. In mode 1, the CPDFI register controls both the playback and record paths.

Argument(s)ARGUMENT(S):
data�This argument represents the data to be stored in either CPDFI or CRDFI. There are several symbolic constants that have been defined to make it easier for the calling application to define the format. Set this argument to any of the following:
BIT8_ULAW for u-Law
BIT8_ALAW for A-Law
BIT8_LINEAR for 8-bit unsigned
BIT16_BIG for 16-bit signed big endian
BIT16_LITTLE for 16-bit signed little endian
IMA_ADPCM for IMA compliant ADPCM.
To select stereo data OR in the mnemonic STEREO. The default is mono data.�����index�This represents an index that selects either CPDFI or CRDFI. Set this argument to any of the following:
_CPDFI for playback
_CRDFI for record��

IwaveLineMute

Function
Mutes or un-mutes inputs or outputs.

Syntax
void IwaveLineMute(BYTE state, BYTE inx)

FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function allows the calling program to mute or unmute the inputs or outputs to/from the InterWave IC:
the AUX1/Synth line input (left and right)
the AUX2 line input (left and rigtht)
the left and right line outputs
the left and right line inputs

Argument(s)ARGUMENT(S):
state�This first argument is a boolean type of argument. Set it to ON to mute or OFF to unmute�����inx�This second argument is an index to a register. Set it to any of the following:
 _CLAX1I or LEFT_AUX1_INPUT (All modes)
 _CRAX1I or RIGHT_AUX1_INPUT
 _CLAX2I or LEFT_AUX2_INPUT (All modes)
 _CRAX2I or RIGHT_AUX2_INPUT
 _CLOAI or LEFT_LINE_OUT (Mode 3 only)
 _CROAI or RIGHT_LINE_OUT
_CLMICI or LEFT_MIC_IN (Mode 3)
_CRMICI or RIGHT_MIC_IN
_CLLICI or LEFT_LINE_IN (Modes 2 & 3)
_CRLICI or RIGHT_LINE_IN��

IwaveLineLevel

Function
Sets attenuation for inputs or outputs.

Syntax
void IwaveLineLevel(BYTE level, BYTE inx)

FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function allows the calling program to control the level of attenuation or gain for inputs or outputs to or from the InterWave IC:
the AUX1/Synth line input (left and right)
the AUX2 line input (left and right)
the left and right line outputs
the left and right line inputs
When calling this function, keep in mind that the registers that it acts on must be accessible in the current mode of operation of the codec. The function will not check for invalid actions in order to keep code small and fast.

Argument(s)ARGUMENT(S):
level�This argument represents either an attenuation level or a gain level depending on the value. The range of this argument is 0-31 for gain or attenuation in the range +12dB to -34.5dB in steps of 1.5dB.�����inx�This second argument is an index to a register. Set it to any of the following:
 _CLAX1I or LEFT_AUX1_INPUT (All modes)
 _CRAX1I or RIGHT_AUX1_INPUT
 _CLAX2I or LEFT_AUX2_INPUT (All modes)
 _CRAX2I or RIGHT_AUX2_INPUT
 _CLOAI or LEFT_LINE_OUT (Mode 3)
 _CROAI or RIGHT_LINE_OUT
_CLMICI or LEFT_MIC_IN (Mode 3)
_CRMICI or RIGHT_MIC_IN
_CLLICI or LEFT_LINE_IN (Modes 2 & 3)
_CRLICI or RIGHT_LINE_IN��

IwaveMonoAtten

Function
Sets attenuation for mono input.

Syntax
void IwaveMonoAtten(BYTE level)

FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function allows the calling program to set the attenuation level for the mono input via CMONOI[3:0]. This function applies to modes 2 & 3 only.

Argument(s)ARGUMENT(S):
level�The first argument should always be set to a number in the range 0-15 for attenuation from 0dB to 45dB (in steps of 3 dB).��

IwaveMonoMute

Function
Mutes mono input or output.

Syntax
void IwaveMonoMute(BYTE state, BYTE io)
FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function allows the calling program to mute or unmute the mono input or output to/from the InterWave IC via CMONOI[7:6]. This function applies in modes 2 & 3 only.

Argument(s)ARGUMENT(S):
state�The first argument should always be set to either ON or OFF.�����io�The second argument should be set to either MONO_OUTPUT or MONO_INPUT.��

IwaveInputGain

Function
Sets gain for input source.

Syntax
void IwaveInputGain(BYTE index, BYTE gain)
FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function allows the calling program to set a gain level for the left and right input sources (CLICI[7:6] or CRICI[7:6]). The gain is set in CLICI[3:0] or CRICI[3:0]. This function applies in all codec modes.

Argument(s)ARGUMENT(S):
index�Set this first argument to either LEFT_SOURCE (or _CLICI) or RIGHT_SOURCE (or _CRICI).�����gain�This argument ranges between 0 (0dB gain) and 15 (22.5dB).��

IwaveInputSource

Function
Selects source to record from.

Syntax
void IwaveInputSource(BYTE index, BYTE source)

FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function allows the calling program to select among any of several possible sources to the ADC's. The possible input sources and their corresponding symbolic constants are:
Line (LINE_IN)
Aux1 (AUX1_IN)
Microphone (MIC_IN)
Mixer (MIX_IN)
The selection of the source is via registers CLICI (left channel) and CRICI (right channel). This function is applicable in all codec modes.

ARGUMENT(S):Argument(s)
index�Set this first argument to either LEFT_SOURCE or RIGHT_SOURCE. Always use the symbolic constants for the arguments.�����source�set this argument to any of the following:
LINE_IN
AUX1_IN
MIC_IN
MIX_IN��

IwaveDacAtten

Function
Sets attenuation for left and right DACs.

Syntax
void IwaveDacAtten(BYTE level, BYTE index)
FUNCTION: iwcodec.h

DESCRIPTION:Remarks
This function allows the calling program to control the level of attenuation to the left or right DACs at registers CLDACI and CRDACI respectively. This functions applies in all modes of codec operation.

Argument(s)ARGUMENT(S):
level�The first argument is a number between 0 and 63 for attenuations of 0dB to -94.5dB�����index�Set this argument to either LEFT_DAC (or _CLDACI) or RIGHT_DAC (or _CRDACI).��

IwaveSetFrequency

Function
Sets playback or record sample rate.

Syntax
void IwaveSetFrequency(BYTE index, WORD freq)

FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function allows the calling program to set either the playback or record sample frequency. The caller specifies the frequency in Hertz and the closest frequency is set in either register CPDFI or CRDFI. You must keep in mind that when the codec is in modes 1 or 2 the CPDFI controls both the playback and record sampling rates. In mode 3, the rates are controlled separately.

Argument(s)ARGUMENT(S):
index�set this argument to either _CPDFI or _CRDFI.�����freq�this is the sample frequency in Hertz . The function will select the sample frequency��

IwaveDisableLineIn

Function
Disables line input.

Syntax
void IwaveDisableLineIn(void)

FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function disables the stereo line inputs. This is done by setting UMCR[0]=1. Both left and right channels are disabled.

ARGUMENT(S):
None.

See AlsoRELATED FUNCTION(S):
IwaveEnableLineIn.

IwaveEnableLineIn

Function
Enables line input.

Syntax
void IwaveEnableLineIn(void)

FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function enables the stereo line inputs. This is done by setting UMCR[0]=0. Both left and right channels are enabled.

ARGUMENT(S):
None.

See AlsoRELATED FUNCTION(S):
IwaveDisableLineIn.

IwaveDisableOutput

Function
Disables master output.

Syntax
void IwaveDisableOutput(void)

FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function disables the stereo line outputs. This is done by setting UMCR[1]=1. Both left and right channels are muted.

ARGUMENT(S):
None.

See AlsoRELATED FUNCTION(S):
IwaveEnableOutput.

IwaveEnableOutput

Function
Enables master output.

Syntax
void IwaveEnableOutput(void)
FUNCTION: iwcodec.h

DESCRIPTION:Remarks
This function enables the stereo line outputs. This is done by setting UMCR[1]=0. Both left and right channels are enabled.

ARGUMENT(S):
None.

See AlsoRELATED FUNCTION(S):
IwaveDisableOutput.

IwaveDisableMicIn

Function
Disables Microphone input.

Syntax
void IwaveDisableMicIn(void)

FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function disables the stereo MIC inputs (both left and right channels are disabled) to the InterWave IC. This is done by setting UMCR[2]=0.

ARGUMENT(S):
None.

See AlsoRELATED FUNCTION(S):
IwaveEnableMicIn.

IwaveEnableMicIn

Function
Enables Microphone input

Syntax
void IwaveEnableMicIn(void)
FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function enables the stereo MIC inputs (both left and right channels are disabled) to the InterWave IC. This is done by setting UMCR[2]=1.

ARGUMENT(S):
None.

See AlsoRELATED FUNCTION(S):
IwaveDisableMicIn.

IwaveCodecAccess

Function
Selects either PIO or DMA to service codec FIFOs.

Syntax
void IwaveCodecAccess(BYTE type)

FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function allows an application to select the way the codec’s FIFO will be accessed. The codec FIFOs can be serviced or accessed via DMA or via programmed I/O. This function will set up both FIFOs to be serviced the same way. The DDK also provides functions IwavePlayAccess and IwaveRecordAccess which perform the same exact functionality except that they apply to the playback path and the record path respectively.

Argument(s)ARGUMENT(S):
type�This argument selects the type of access to the codec FIFOs. Set this argument to any of the following:
DMA_ACCESS for DMA access.
DMA_ACCESS | DMA_SIMPLEX for single channel DMA access. Only record or playback operation is allowed but not both.
PIO_ACCESS for programmed I/O access.��
See AlsoRELATED FUNCTION(S):
IwavePlayAccess, IwaveRecordAccess.

IwaveCodecTrigger

Function
Enables or disables codec record or playback paths.

Syntax
void IwaveCodecTrigger(BYTE path)

FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function allows an application to enable the codec record or playback path or both paths thereby causing the flow of data through the DACs or ADCs when sample loaded or removed from the FIFOs. The path enabling is done by setting CFIG1I[1:0]. Note that these bits are not write-protected.

Argument(s)ARGUMENT(S):
path�set this argument to either RECORD or PLAYBACK. If both paths must be enabled OR both constants together (RECORD | PLAYBACK).��___
IwaveCodecIrq

Function
Enables or disables codec interrupts.

Syntax
void IwaveCodecIrq(BYTE mode)

FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function disables or enables the Codec Interrupts. To enable interrupts set CEXTI[2] high thus causing all interrupt sources (CSR3I[6:4]) to pass onto the IRQ pin. To disable interrupts set CEXTI[2]=0. This function will clear any interrupts requests presently pending before enabling or disabling interrupts.

ARGUMENT(S):Argument(s)
mode�set this argument to either CODEC_IRQ_ENABLE to enable codec IRQs onto the ISA bus or to ~CODEC_IRQ_ENABLE to disable them.��___
IwaveCodecMode

Function
Sets the codec mode of operation.

Syntax
void IwaveCodecMode(BYTE mode)

FUNCTION: iwcodec.h

DESCRIPTION:Remarks
This function allows to switch between the different modes of codec operation. This function could be used at the start of an application. The InterWave IC’s codec defaults to mode 1 after reset. Modes 1 and 2 provide compatibility with the CS4231 codec from Crystal Semiconductor Corp. Mode 3 provides enhanced features over the CS4231.

Argument(s)ARGUMENT(S):
mode�set this argument to any of the following:
CODEC_MODE1
CODEC_MODE2
CODEC_MODE3��

IwaveCodecStatus

Function
Returns codec status.

Syntax
void IwaveCodecStatus(BYTE index)

FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function allows an application to retrieve the contents of any of the Codec's Status Registers CSR1R, CSR2I, and CSR3I. Note that a read of CSR1R will cause bits CSR3I[3:0] and CSR2I[7:6] to be cleared if any are set. Thus,So before reading the CSR1R make sure these bits have been retrieved by the application if needed.

Argument(s)ARGUMENT(S):
index�set this argument to any of the following:
CODEC_STATUS1
CODEC_STATUS2
CODEC_STATUS3��

IwaveTimerStart

Function
Starts the codec timer.

Syntax
void IwaveTimerStart(void)

FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function sets off the codec’s timer. This is done by setting CFIG2I[6] high.

ARGUMENT(S):
None.

See AlsoRELATED FUNCTION(S):
IwaveTimerStop, IwaveSetTimer.

IwaveSetTimer

Function
Loads value into codec timer.

Syntax
void IwaveSetTimer(WORD cnt)

FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function loads a value into the timer counter. The lower byte of the counter is loaded last. This is because upon writing to CLTIMI, the internal counter is loaded. The codec’s timer is a 10 (s timer. Note that reading these registers will not give the current value of the counter but the value loaded into the registers initially. When the timer is set off the counter will decrement down to zero at which time an interrupt is generated (if enabled). The internal counter is reloaded on the next clock.

Argument(s)ARGUMENT(S):
cnt�This is a 16-bit value to be loaded into the timer counter.��
See AlsoRELATED FUNCTION(S):
IwaveTimerStop, IwaveTimerStart.

IwaveTimerStop

Function
Stop codec timer.

Syntax
void IwaveTimerStop(void)

FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function turns off the codec’s timer. This is done by setting CFIG2I[6] low. This is needed to stop the internal counter from being reloaded and continue decrementing.

ARGUMENT(S):
None.

See AlsoRELATED FUNCTION(S):
IwaveSetTimer, IwaveTimerStart.

IwavePlayData

Function
Plays sound via DMA.

Syntax
FLAG IwavePlayData(WORD size, BYTE wait, BYTE type)

FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function sets up and triggers a DMA transfer of data through the codec’s playback path. It programs the sample counters and makes sure that DMA cycles are selected. It then calls on IwaveCodecTrigger to set off the transfer. This functions automatically selects DMA as mode of access for the playback FIFO.

Argument(s)ARGUMENT(S):
size�This is the size in bytes of the amount of data to transfer.�����wait�Set this variable to TRUE if you want this function to return only after the transfer is completed. Set it to FALSE to return right away.�����type�This represents the type of transfer. Set this argument to any of the following:
DMA_READ to transfer a specific amount just once.
AUTO_READ to have the DMA controller repeat the transfer over and over. The controller resets its base address to the start of the DMA buffer and starts all over again.��
Return ValueOUTPUT(S):
This function will return DMA_BUSY if the DMA channel is in use or DMA_OK if it all went OK.

See AlsoRELATED FUNCTION(S):
IwaveRecordData.

IwaveRecordData

Function
Records sound via DMA.

Syntax
void IwaveRecordData(WORD size, BYTE wait, BYTE type)
FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function sets up and triggers a DMA transfer of data through the codec’s record path. It programs the sample counters and makes sure that DMA cycles are selected. It then calls on IwaveCodecTrigger to set off the transfer. This functions automatically selects DMA as mode of access for the record FIFO.

Argument(s)ARGUMENT(S):
size�This is the size in bytes of the amount of data to transfer.�����wait�Set this variable to TRUE if you want this function to return only after the transfer is completed. Set it to FALSE to return right away.�����type�This represents the type of transfer. Set this argument to any of the following:
DMA_WRITE to transfer a specific amount just once.
AUTO_WRITE to have the DMA controller repeat the transfer over and over. The controller resets its base address to the start of the DMA buffer and starts all over again.��
Return ValueOUTPUT(S):
This function will return DMA_BUSY if the DMA channel is in use or DMA_OK if it all went OK.

See AlsoRELATED FUNCTION(S):
IwavePlayData.

IwaveStopDma

Function
Stops active DMA transfer

Syntax
void IwaveStopDma(BYTE path)
FUNCTION: iwcodec.h

RemarksDESCRIPTION:
This function stops an active DMA transfer to or from the record or playback FIFOs. The transfer is stopped by disabling both the playback path and the DMA channel.

Argument(s)ARGUMENT(S):
path�Set this argument to either PLAYBACK or RECORD.��
See AlsoRELATED FUNCTION(S):
IwaveRecordData, IwavePlayData.

IwaveReadVoice

Function
Gets a voice’s fetch address.

Syntax
ADDRESS IwaveReadVoice(BYTE voice)
FUNCTION: iwvoice.h

RemarksDESCRIPTION:
This function returns the actual address from which a playing voice is currently fetching data.

Argument(s)ARGUMENT(S):
voice�Number of the voice to be processed. voice can be 0-31 (0 is voice 1).��
Return ValueOUTPUT(S):
The returned value is a real address the synthesizer is fetching data from.

IwaveVoicePan

Function
Sets position of a voice

Syntax
void IwaveVoicePan(BYTE voice, WORD right, WORD left)

FUNCTION: iwvoice.h

RemarksDESCRIPTION:
This function sets the stereo position of a voice. When SMSI[5]=0 a GUS compatible mode is in effect and SROI[11:8] controls both the left and right stereo offsets. When SMSI[5]=1 SROI[15:4] and SLOI[15:4] will control the right and left offsets respectively.

Argument(s)ARGUMENT(S):
voice�Number of the voice set the stereo position for.�����right�right offset value to be reflected in SROI[15:4].�����left�left offset value to be written in SLOI[15:4]. This is written when SMSI[5]=1, that is, when both offsets or panning positions are being controlled separately.��
OUTPUT(S):
None.

IwaveSynthMode

Function
Sets InterWave hardware to GUS-compatible mode or enhanced mode.

Syntax
void IwaveSynthMode(BYTE mode)
FUNCTION: iwvoice.h

RemarksDESCRIPTION:
This function can be used to switch the InterWave hardware between GUS compatible mode and enhanced mode. The DDK functions can detect the mode of operation via iw.smode. The argument to this function should be set to either GUS_MODE or ENH_MODE. Note that if your application manages local memory via the DDK memory management functions, switching modes invalidates the current memory-management structure. You must initialize DRAM by calling IwaveMemInit again.

Argument(s)ARGUMENT(S):
mode�set this argument to either GUS_MODE or ENH_MODE to select the desired mode.��
OUTPUT(S):
None

IwaveSynthGlobal

Function
Controls global mode of operation of the synthesizer.

Syntax
void IwaveSynthGlobal(BYTE mode, BOOL state)
FUNCTION: iwvoice.h

RemarksDESCRIPTION:
This function can be used to control the global mode of operation of the sSynthesizer which affects all voices. You can enable or disable one or more modes at the same time, but you can not both enable and disable modes at the same time. If you mean only to turn on enhanced mode, it is recommended that you use IwaveSynthMode.

Argument(s)ARGUMENT(S):
mode�Set this argument to any of the following:
ENH_MODE or
ENABLE_LFOS or
NO_WAVE_TABLE or
ENH_MODE|ENABLE_LFOS or
ENH_MODE|ENABLE_LFOS|NO_WAVE_TABLE).
You can not both enable and disable on the same call.�����state�Set this argument to either ON or OFF.��
OUTPUT(S):
None

ExampleUSAGE:
The following calls illustrate the usage of this function:
IwaveSynthGlobal(ENH_MODE,ON) turns on enhanced mode
IwaveSynthGlobal(ENH_MODE|ENABLE_LFOS,ON) ables enhanced mode and all LFOS.
IwaveSynthGlobal(ENH_MODE,OFF) disables enhanced mode (enables GUS mode).

See AlsoRELATED FUNCTION(S):
IwaveSynthMode.

IwaveStopVoice

Function
Stops a voice.

Syntax
void IwaveStopVoice(BYTE voice)

FUNCTION: iwvoice.h

RemarksDESCRIPTION:
This function stops a voice’s output. It does this by stopping any volume looping and then preventing the synth from fetching any more samples from local memory (sets SACI[1:0]=(1,1)). It also disables the voice’s ability to generate a wavetable interrupt.

Argument(s)ARGUMENT(S):
voice�Number of the voice to be processed. voice can be 0-31 (0 is voice 1).��
OUTPUT(S):
None

ExampleUSAGE:
The call IwaveStopVoice(22) stops voice 23.

See AlsoRELATED FUNCTION(S):
IwaveStopVolume

IwaveStopVolume

Function
Stops volume looping for a voice.

Syntax
void IwaveStopVolume(BYTE voice)

FUNCTION: iwvoice.h

RemarksDESCRIPTION:
This function stops a voice’s volume looping component. It does this by setting SVCI[1:0] high. The argument should be set to the number of the voice minus one.

Argument(s)ARGUMENT(S):
voice�Number of the voice to be processed. Voice can be 0-31 (0 is voice 1).��
OUTPUT(S):
None

ExampleUSAGE:
The call IwaveStopVolume(22) stops the volume looping component of voice 23.

See AlsoRELATED FUNCTION(S):
IwaveStopVoice

IwaveReadyVoice

Function
Readies a voice for playing.

Syntax
BYTE IwaveReadyVoice(BYTE voice, ADDRESS begin, ADDRESS end, ADDRESS fetch, BYTE mode)

FUNCTION: iwvoice.h

RemarksDESCRIPTION:
This function programs a selected voice on the InterWave IC for playback. It does NOT start the voice playing, it just gets it ready. The width of the sample data should be conveyed via mode. The address contained in the SAEHI and SAELI registers (end of sample buffer) must always be greater than the address contained in the SASHI and SASLI registers. If the begin argument contains a bigger address than the end argument wavetable addressing will be set up to decrement from begin towards the address boundary in end. This will be reflected in the return value. Use the VC_DIRECT (SACI[6]) symbolic constant if you need to determine whether wavetable addressing is decrementing or incrementing from the returned value. Also begin, end and fetch must all be addresses that lie within the same 4MB local memory bank, that is, bits [23:22] of these addresses must be the same. Otherwise, unpredictable results will be obtained.

Argument(s)ARGUMENT(S):
voice�Number of the voice to be readied for processing. voice can be 0-31 (0 is voice 1).�����begin�This is the boundary address that points to the beginning or start of the sample buffer in wavetable memory. This address is stored in the SASHI and SASLI registers.�����end�This is the boundary address that points to the beginning or start of the sample buffer in wavetable memory. This address is stored in the SAEHI and SAELI registers.�����fetch�This is the address in local memory where the synthesizer is currently fetching sample data from. This address is held in the SAHI and SALI registers. The address in these registers will change as the voice moves through wavetable memory. This value should be between begin and end.�����mode�This argument is needed for the caller to indicate the width of the data. Set it to VC_DATA_WIDTH if the sample data is 16-bit data or to 0 (or FALSE) otherwise.
��
Return ValueOUTPUT(S):
The function returns the value given in the argument mode possibly ORed with VC_DIRECT. That is it will return mode or mode | VC_DIRECT if address decrementing has been turned on.

ExampleUSAGE:
The value returned by this call IwaveReadyVoice(0,400L,200L,400L,VC_DATA_WIDH) will be (VC_DATA_WIDTH|VC_DIRECT).

IwaveStartVoice

Function
Starts a voice.

Syntax
void IwaveStartVoice(BYTE voice)

FUNCTION: iwvoice.h

RemarksDESCRIPTION:
This function actually sets the voice playing. It is assumed that the characteristics of the voice have already been programmed. SACI[1:0]=(0,0) for the voice to work.

Argument(s)ARGUMENT(S):
voice�Number of the voice to be started. voice can be 0-31 (0 is voice 1).��
OUTPUT(S):
None

IwaveSetVoiceEnd

Function
Sets a end boundary for a voice.

Syntax
void IwaveSetVoiceEnd(BYTE voice, ADDRESS local)

FUNCTION: iwvoice.h

RemarksDESCRIPTION:
This functions allows the caller to set a new end boundary for a particular voice. When used in conjunction with IwaveSetLoopMode to turn looping off a sampled decay can be implemented.

Argument(s)ARGUMENT(S):
voice�Number of the voice the call applies to. voice can be 0-31 (0 is voice 1).�����local�This is a real address in local memory. It will be converted to a logical address depending on the state of operation of the synth: enhanced or GUS compatible mode.��
OUTPUT(S):
None

IwaveReadVolume

Function
Reads volume level of a voice

Syntax
WORD IwaveReadVolume(BYTE voice)

FUNCTION: iwvoice.h

RemarksDESCRIPTION:
This function returns the current volume level for the specified voice as reflected in the synth volume level register SVLI[15:4].

Argument(s)ARGUMENT(S):
voice�Number of the voice the call applies to. voice can be 0-31 (0 is voice 1).��
Return ValueOUTPUT(S):
The function returns the volume level for the voice SVLI[15:4].

See AlsoRELATED FUNCTION(S):
IwaveSetVolume.

IwaveSetVolume

Function
Sets the volume level for a voice.

Syntax
void IwaveSetVolume(BYTE voice, WORD volume)

FUNCTION: iwvoice.h

RemarksDESCRIPTION:
This function sets the current volume level for the specified voice as it is to be written in the synth volume level register SVLI[15:4].

Argument(s)ARGUMENT(S):
voice�Number of the voice the call applies to. voice can be 0-31 (0 is voice 1).�����volume�Volume level to be set in SVLI[15:4] for the specified voice.��
OUTPUT(S):
None

See AlsoRELATED FUNCTION(S):
IwaveReadVolume.

IwaveRampVolume

Function
Ramps volume of a specified voice

Syntax
void IwaveRampVolume(BYTE voice, WORD start, WORD end, BYTE rate, BYTE mode)
FUNCTION: iwvoice.h

RemarksDESCRIPTION:
This function ramps the volume on a specified voice. An initial volume level, a final volume level, a rate and increment and a volume looping mode must be specified.

Argument(s)ARGUMENT(S):
voice�Number of the voice the call applies to. voice can be 0-31 (0 is voice 1).�����start�Start volume level to be set in SVSI. This must be a number in the range 0-4095.�����end�End volume level to be set in SEVI. This must be a number in the range 0-4095.�����rate�This argument contains two pieces of information. Bits [5:0] represent the increment to be added to or subtracted from the volume level. Bits[7:6] control the rate at which this increment is added or subtracted. Thus, this argument is an image of the register SVRI. To select a rate OR in one of the following symbolic constants:
VOLUME_RATE0 - This rate adds or subtracts the increment value to the volume level every frame.
VOLUME_RATE1 - This rate adds or subtracts one eighth of the increment value to the volume every frame.
VOLUME_RATE2 - This rate adds or subtracts one eighth of the increment value to the volume every 8th frame.
VOLUME_RATE3 - This rate adds or subtracts one eighth of the increment value to the volume every 64th frame.
The increment value can be any number in the range 0-63. You could for instance set this argument to VOLUME_RATE2|32. To select the first rate you do not need to include the symbolic constant.�����mode�Use this argument if you wish to specify continuous playback. Set it to VC_ROLLOVER for continuous playback or 0. You could also specify the direction of ramping by ORing in VC_DIRECT for decreasing volume but be aware that the function automatically selects this mode if start is greater than end.��
OUTPUT(S):
None

See AlsoRELATED FUNCTION(S):
IwaveSetVolume, IwaveReadVolume.

IwaveVoicePitch

Function
Sets the frequency of a voice (enhanced mode)

Syntax
void IwaveVoicePitch(BYTE voice, DWORD freq)
FUNCTION: iwvoice.h

RemarksDESCRIPTION:
This function sets the frequency of a the specified voice into register SFCI. The contents of this register are set based on the desired input frequency. SFCI is made up of two parts: SFCI[15:10] is an integer part indicating how many times faster than it was recorded we wish to play the sample data. SFCI[9:0] is a fractional part that allows more resolution for the frequency. SFCI[0] is not available in GUS compatible mode. Use this function if you intend to write your application to be an enhanced mode application. Otherwise, use function IwaveVoiceFreq.

Argument(s)ARGUMENT(S):
voice�Number of the voice the call applies to. voice can be 0-31 (0 is voice 1).�����freq�Frequency at which the voice is to be played back.��

OUTPUT(S):
None

See AlsoRELATED FUNCTION(S):
IwaveVoiceFreq.

IwaveVoiceFreq

Function
Sets the frequency of a voice

Syntax
void IwaveVoiceFreq(BYTE voice, DWORD freq)

FUNCTION: iwvoice.h

RemarksDESCRIPTION:
This function sets the frequency of a the specified voice into register SFCI. The contents of this register are set based on the desired input frequency. SFCI is made up of two parts: SFCI[15:10] is an integer part indicating how many times faster than it was recorded we wish to play the sample data. SFCI[9:0] is a fractional part that allows more resolution for the frequency. SFCI[0] is not available in GUS compatible mode. Use this function if you intend to write your application to be a GUS-compatible mode application. Otherwise, use function IwaveVoicePitch so that your code is smaller.

ARGUMENT(S):Argument(s)
voice�Number of the voice the call applies to. voice can be 0-31 (0 is voice 1).�����freq�Frequency at which the voice is to be played back.��
OUTPUT(S):
None

See AlsoRELATED FUNCTION(S):
IwaveVoicePitch

IwaveSetVoicePlace

Function
Sets the fetching address for a voice

Syntax
void IwaveSetVoicePlace(BYTE voice, DWORD local)

Remarks
This function sets the address location in local memory where a voice fetches data from to a new position. This can be useful when one wishes to eliminate the contribution from a voice into the output. All voices fetching locations are summed into the output even if the voice is not running. 'Pops' in the audio may result if a voice's fetching position is set to a location with a significant value.
Argument(s)
voice�voice that the operation applies to.�����local�fetching location in local memory.��
See Also
IwaveReadVoice

IwaveSetLoopMode

Function
Sets looping mode for volume and wavetable components of a voice.

Syntax
void IwaveSetLoopMode(BYTE voice, BYTE amode, BYTE vmode)

FUNCTION: iwvoice.h

RemarksDESCRIPTION:
This function allows the caller to set up the looping mode for both addressing and volume of a voice. You can also enable address and volume boundary interrupts. The set up for a voice is accomplished at registers SACI and SVCI. If you do not enable a feature it will certainly be disabled by the call to this function.

Argument(s)ARGUMENT(S):
voice�Number of the voice the call applies to. voice can be 0-31 (0 is voice 1).�����amode�Use this argument to specify the following:
Data Width. OR in the symbolic constant VC_DATA_WIDTH to specify 16-bit data. Otherwise 8-bit data will be selected.

Direction. OR in the constant VC_DIRECT if you want wavetable addressing to be from the high address boundary to the low address boundary.

Enable Looping. OR in the symbolic constant VC_LOOP_ENABLE to enable looping. Otherwise looping will be disabled.

Enable Bidirectional Looping. OR in the symbolic constant VC_BI_LOOP to enable bidirectional looping.

Enable Wavetable IRQ. If you want the voice to generate interrupts when an address boundary is crossed OR in the symbolic constant VC_IRQ_ENABLE.�����vmode�Use this argument to specify the following:
Enable Continuous Play. OR in the symbolic constant VC_ROLLOVER to specify 16-bit data. Otherwise 8-bit data will be selected.

Direction. OR in the constant VC_DIRECT if you want the volume to decrease.

Enable Looping. OR in the symbolic constant VC_LOOP_ENABLE to enable volume looping. Otherwise looping will be disabled.

Enable Bidirectional Looping. OR in the symbolic constant VC_BI_LOOP to enable bidirectional volume looping.

Enable Volume IRQ. If you want the voice to generate interrupts when a volume boundary is crossed OR in the symbolic constant VC_IRQ_ENABLE. Otherwise, volume IRQs will be disabled for the voice.��
OUTPUT(S):
None

See AlsoRELATED FUNCTION(S):
IwaveReadyVoice

IwavePnpKey

Function
Issues the initiation key

Syntax
void IwavePnpKey(void)
FUNCTION: iwpnp.h

RemarksDESCRIPTION:
This function issues the initiation key that places the PnPPlug and Play interface into the configuration mode. The PnP interface is quiescent at power up and must be enabled by software. This function will execute 32 I/O writes to PIDXR (0x279). The first thing the function does is to reset the LFSR to its initial value by a sequence of two write cycles of 0x00 to PIDXR before issuing the key.

ARGUMENT(S):
None.

OUTPUT(S):
None

See AlsoRELATED FUNCTION(S):
IwavePnpWake.

IwavePnpPing

Function
Detects the InterWave hardware

Syntax
BYTE IwavePnpPing(DWORD vendor)

Remarks
This function allows the caller to detect an InterWave based adapter board and will return its asigned CSN so that an application can access its PnP interface and determine the board's current configuration. In conducting its search for the InterWave IC, the function will use the first 32 bits of the Serial Identifier called the vendor ID in the PnP ISA specification. The last 4 bits in the Vendor ID represent a revision number for the particular product and are not included in the search. The function will return the Vendor ID in the member vendor of variable iw . The calling application should check the revision bits to make sure it is compatible with the board. Also, this function determines the PnP data port and stores it in member pnprdp of variable iw. IwaveOpen calls this function.

Argument(s)

vendor�First 32 bits of the serial identifier to be used in the search for the InterWave hardware. ��

Return Value
The Card Select Number is returned to the caller. Use this number to select the InterWave PnP interface at any time to read resource data or to re-configure its registers. If the InterWave hardware is not detected then a value of 0 (FALSE) is returned.

See Also
IwavePnpOpen, IwavePnpGetCSN.

IwavePnpWake

Function
Issues the WAKE[CSN] command

Syntax
void IwavePnpWake(BYTE csn)

FUNCTION: iwpnp.h

RemarksDESCRIPTION:
This function issues a WAKE[CSN] command to the InterWave IC’s PnP interface. If the argument csn matches the Card Select Number stored in register PCSNI, the particular card will enter the configuration state. Otherwise it will enter the sleep mode. It is assumed that the PnP interface is not in the wait-for-key state.

Argument(s)ARGUMENT(S):
csn�This is the card select number of the card that is meant to be placed in configuration mode. Its valid range is 1-255.��

OUTPUT(S):
None

See AlsoRELATED FUNCTION(S):
IwavePnpKey.

IwavePnpPeek

Function
Reads resource data from serial EEPROM.

Syntax
void IwavePnpPeek(PORT pnprdp, WORD bytes, BYTE *data)
FUNCTION: iwpnp.h

RemarksDESCRIPTION:
This function will return the number of specified bytes of resource data from the serial EEPROM. The function will NOT reset the serial EEPROM logic with successive calls in order to allow reading the entire EEPROM by repeated calls. It is assumed that the InterWave PnP interface is not in either the sleep or wait-for-key states. Also, on the first call, if the calling program means to read from the beginning the serial EEPROM logic must be reset. For this, the caller should issue a WAKE[CSN] command.

Argument(s)ARGUMENT(S):
pnprdp�This is the read data port. All indexed registers in the Plug and Play interface are read via this port. �����bytes�This is the number of bytes to be read from the serial EEPROM.�����data�This is a pointer to where the data read from the serial EEPROM are to be stored.��
OUTPUT(S):
None

See AlsoRELATED FUNCTION(S):
IwavePnpKey, IwavePnpWake.

IwavePnpIsol

Function
Performs PnP isolation protocol to enumerate each PnP card.

Syntax
BYTE IwavePnpIsol(PORT *pnprdp)

FUNCTION: iwpnp.h

RemarksDESCRIPTION:
This function will generate 72 pairs of I/O read cycles from the PNPRDP register which is initially chosen to be at 0x203. The function then checks for both 0x55 and 0xAA driven by the hardware. If both 0x55 and 0xAA are read back, the function assumes that the hardware had a 1 in that position. Otherwise, a 0 is assumed. During the first 64 bits, the function generates a checksum using the received data. This checksum is compared with the checksum read back in the last 8 bits of the sequence. If during the first iteration, the 0x55 and 0xAA sequence is not read back or the checksums don’t match the function assumes a PNPRDP conflict and relocates this port. If after various tries the same situation arises, then the function will assume that there are no PnP cards in the system. This function will attempt to locate the PNPRDP in the range 0x203-0x2F3. It will return the CSN of the last card isolated (greatest CSN). When this function exits all PnP cards are in the sleep state.

Argument(s)ARGUMENT(S):
pnprdp�This is a pointer to where the function is to store the address of the PNPRDP register. All indexed registers in the Plug and Play section are read via this port. ��
Return ValueOUTPUT(S):
The function will return PNP_ABSENT if it is not able to either successfully assign a location for the PnP READ DATA PORT or if it does not detect the sequence 0xAA, 0x55.

See AlsoRELATED FUNCTION(S):
IwavePnpKey, IwavePnpWake.

IwavePnpSerial

Function
Reads vendor ID and the serial number from serial EEPROM.

Syntax
void IwavePnpSerial(PORT pnprdp, BYTE csn, BYTE *vendor, DWORD serial)

FUNCTION: iwpnp.h

RemarksDESCRIPTION:
This function reads the first nine bytes of the data from the serial EEPROM and returns the Vendor ID and the serial number. First, it resets the EEPROM control logic by issuing a WAKE[CSN] command. The function will return an ASCII string for the vendor ID into the char array pointed to by vendor in the VVVNNNN format. The serial number is placed in the 32-bit variable pointed to by serial. Note that the 9th byte is read but not used as it is invalid when the serial identifier is read via PRESDI. This function assumes that the PnP interface is not in the wait-for-key state. Otherwise, meaningless results will be obtained.

Argument(s)ARGUMENT(S):
pnprdp�This is the address of the PnP READ DATA PORT.�����csn�This is the CSN assigned to the InterWave card.�����vendor�This is a pointer to where the Vendor ID in ASCII will be stored. �����serial�This is a pointer to where the serial number will be stored.��

See AlsoRELATED FUNCTION(S):
IwavePnpSearch.

IwavePnpDevice

Function
Selects a logical device

Syntax
void IwavePnpDevice(BYTE dev)

Remarks
Selects any one of the five logical devices in the InterWave IC.

Argument(s)

dev�select the logical device by setting this argument to any of the following:
AUDIO for the audio device (synthesizer, codec and compatibility sections)
EXT for the external function (usually a CD-ROM)
GAME for Game control device
EMULATION for Sound Blaster/AdLib emulation device
MPU401 for the MPU401 emulation device��

See Also
IwavePnpActivate.

IwavePnpActivate

Function
Activates or de-activates a logical device

Syntax
void IwavePnpActivate(BYTE dev, BYTE state)

Remarks
Activates any one of the five logical devices in the InterWave IC.

Argument(s)

dev�select the logical device by setting this argument to any of the following:
AUDIO for the audio device (synthesizer, codec and compatibility sections)
EXT for the external function (usually a CD-ROM)
GAME for Game control device
EMULATION for Sound Blaster/AdLib emulation device
MPU401 for the MPU401 emulation device�����state�Set this argument to either ON or OFF to activate or de-activate the logical device.��

Example
The following example illustrates the use of various PnP driver functions.

�//###
//
// FILE: pnpinit.c
//
// PROFILE: Sample of code to configure the part once you have it in PnP mode. The user still // has control over what resources get configured in the PnP Interface via DOS variable
// IWCFG. IWCFG should be set as IWCFG=P2XR,PCODAR,PCDRAR,PATAAR,P401AR,
// PUI1SI,PUI2SR,PRISI,PMISI,PSBISI,PUD1SI,PUD2SR,PRDSI. If the variable is not defined in the
// environment then the part will initialized as if it were defined as follows:
// IWCFG=220,32C,1F0,3F6,300,11,5,0,0,0,1,1,0.
// This program is a good example of how to detect the InterWave hardware. Note that
// detection depends on the PnP ISA Specification defined vendor ID. This vendor ID is
// assumed by the program to be 0x0496550A. Note that IwavePnpPing takes this number // as an argument only with its bytes written backwards.
//###
#include <stdio.h>
#include "iwprotos.h"
#include "iwdefs.h"
#include "iwcore.h"

void main()
{
	WORD reg;
	BYTE csn_max=0, csn=0;

	IwaveInit(); // get IWCFG environment variable
	IwavePnpKey();
	IwaveRegPoke(PCCCI,0x05); // software reset (CSN and all)
	IwaveDelay(10); // wait for reset to complete
	csn_max=IwavePnpIsol(&iw.pnprdp); // Isolate card(s) if needed
	csn=IwavePnpPing(0x0A559604); // get InterWave's CSN
 if (csn==FALSE)
 {
	 printf("InterWave Card not found\n");
	 exit(-1);
 }
	printf("Found %u PnP Card(s) in System\n",csn_max);
	printf("InterWave CSN : %u\n",csn);
	printf("InterWave Vendor ID : %lx\n",iw.vendor);
 printf("PnP READ DATA PORT : %x\n",iw.pnprdp);
	IwavePnpKey();
	IwavePnpWake(csn); // Select the InterWave Board
	IwavePnpSetCfg(); // Configure PnP Interface Registers
	IwavePnpActivate(AUDIO,ON);
	IwaveGusReset(); // place IC in GUS compatible mode
//###
// Configure Memory and enable IRQ/DMA interrupts
//###
	 IwaveMemCfg();
	 _poke(iw.p2xr,0x0b);
	 if (_peek(iw.p2xr)!=0x0b)
 printf("Failure to write UMCR\n");
//###
// The following instructions apply to the codec and they are
// meant to leave it in a functional state. Remember legacy software
// should be able to run.
//###
	 IwaveCodecIrq(CODEC_IRQ_ENABLE); // ensure that codec can IRQ
	 IwaveRegPoke(URSTI,0x07);
	 IwaveCodecMode(CODEC_MODE3); // select mode 3
 IwaveRegPoke(CLOAI,0);
 IwaveRegPoke(CROAI,0);
 IwaveRegPoke(CLMICI,0);
 IwaveRegPoke(CRMICI,0);
	 IwaveRegPoke(CLAX1I,0x08);
	 IwaveRegPoke(CRAX1I,0x08);
	 IwaveRegPoke(CFIG3I,0x02);
	 IwaveRegPoke(CLDACI,0x00);
	 IwaveRegPoke(CRDACI,0x00);
	 IwaveRegPoke(ICMPTI,0x00);
//###
// If both audio DMA channels are the same, combine them
//###
	 if(iw.dma1_chan==iw.dma2_chan)
	 {
	 reg=IwaveRegPeek(UDCI);
 IwaveRegPoke(UDCI,(reg&0x07)|0x40);
	 }
 	 if(iw.synth_irq==iw.midi_irq)
	 {
	 reg=IwaveRegPeek(UICI);
	 IwaveRegPoke(UICI,(reg&0x07)|0x40);
	 }
	 printf("InterWave Initialization. Version B0\n");
}�����
See Also
IwavePnpDevice.

IwavePnpBIOS

Function
Checks for presence of PnP BIOS

Syntax
BYTE far * IwavePnpBIOS(void)

FUNCTION: iwpnp.h

RemarksDESCRIPTION:
This function is a utility that returns a pointer to an installation check structure if there is a valid PnP BIOS in the system. Otherwise, it returns NULL. It could be used within the initialization part of a program.

ARGUMENT(S):
None.

See AlsoRELATED FUNCTION(S):
IwavePnpBIOS40.

IwavePnpBIOS40

Function
Queries PnP BIOS for PnP read data port and number of PnP adapters.

Syntax
WORD IwavePnpBIOS40(BYTE far *ptrS, BYTE far *cfig)
FUNCTION: iwpnp.h

RemarksDESCRIPTION:
If a PnP BIOS system is available, this function will query the BIOS via function 40h to determine the total number of PnP cards in the system as well as the location of the PnP READ DATA PORT. This is a real-mode function and should not be used by protected mode programs.

Argument(s)ARGUMENT(S):
ptrS�This is a far pointer to a PnP BIOS installation check structure.�����cfig�This is a far pointer to a structure containing three elements:
A structure revision member of type BYTE
A member to store the total number of PnP cards (BYTE) and
An element of type PORT to store the address of PNPRDP��
Return Value
Returns 0 if successful or !0 if it fails

See AlsoRELATED FUNCTION(S):
IwavePnpBIOS.

IwavePnpPower

Function
Disables sections of the InterWave hardware.

Syntax
void IwavePnpPower(BYTE mode)

Remarks
This function allows the caller to disable major sections of the InterWave IC and enable low-power modes. Power modes are controlled at register PPWRI.It is assumed that the PnP interface is in configuration mode. For a descriptions of the sections of the IC which can be disabled see the description of register PPWRI.

Argument(s)

mode�The bits of this argument select the sections to be disabled. Bit 7 is the value to be written to the bits selected via bits[6:0]. For instance, 0x83 will write a 1 to bits 0 and 1 of register PPWRI. ��

IwavePnpIOCheck

Function
Checks for I/O conflict as per PnP ISA specification.

Syntax
PORT IwavePnpIOCheck(PORT base, BYTE no_ports)

Remarks
This function allows the caller to perform a conflict check on an I/O port to be used by a logical device. The function receives the base address of the I/O range as well as the number of ports in the range and then performs the I/O check protocol. It returns the address of the the first port in conflict if a conflict is detected or IO_CHK if no conflict is detected. This function assumes that the logical device has been de-activated and that the PnP interface is in the configuration mode.

Argument(s)
base�Base address of the I/O range�����no_ports�Number of ports in the range.��

Return Value
The function returns IO_CHK if no conflicts were detected. Otherwise it will return the address of the I/O port in conflict within the range.

IwaveOpen

Function
Initializes the InterWave harware and the application.

Syntax
void IwaveOpen(BYTE voices, BYTE mode)
FUNCTION: iwinit.h

RemarksDESCRIPTION:
This function is the first DDK function your application should call. Its purpose is to initialize the DDK as well as prepare the sound board for operation. The following takes place during the execution of this driver:
The InterWave board is detected and its configuration is extracted. During this process the CSN assigned to the InterWave IC and the PNPRDP address will be determined and stored in members csn and pnprdp respectively of structure iw.
The global DDK variable iw is initialized to reflect the configuration of the InterWave board.
A GUS reset is performed.
The codec is placed in mode 3.
The synthesizer is multiplexed in and codec mode 3 interrupts enabled.
The selected mode of operation of the synth is programmed. Enhanced or GUS compatible mode can be selected.
Local Memory is sized and iw.size_mem is set to the available local memory for the mode selected.
The selected number of voices are initialized. iw.voices holds the number of voices active.
Interrupts and DMA requests are enabled onto ISA bus.
Line inputs, Mic inputs and Line outputs are disabled (UMCR[3:0]=0x0B).
Registers CLOAI and CROAI are set to 00h to prevent them from affecting modes 1 and 2 of codec operation. You must set the values your application requires into these registers if you are operating in mode 3.

The IWAVE variable iw contains pointers to the DMA and IRQ structures that serve to establish an interface to the InterWave hardware and these are initialized to NULL. If IRQ and DMA requests are services are to be used serviced by the application then, it should register the IRQ and/or DMA structures by a call to IwaveSetInterfaceIwaveInitStructs , by IwaveRegisterDMA or by IwaveRegisterIRQ..

Argument(s)ARGUMENT(S):
voices�This arguments represents the number of voices the application wishes to initialize to start with. This can be any number from 0-31 (voices 1 through 32)�����mode�This argument indicates the mode in which the InterWave will be operating. This could be GUS-compatible mode or enhanced mode. Set this argument to GUS_MODE or ENH_MODE.��
See AlsoRELATED FUNCTION(S):
IwaveClose, IwaveGusReset.

IwaveGusReset

Function
Resets InterWave hardware back to GUS compatible mode.

Syntax
void IwaveGusReset(void)
FUNCTION: iwinit.h

RemarksDESCRIPTION:
This function resets the InterWave to place it in GUS mode. The following registers are affected as indicated:

SGMI[0]=0. GUS Compatible mode.
LDICI, LDMACI, UASRR, UASBCI, LMFSI are all reset.
URSTI[2:1], LMCI[1:0], UADR[7:5,1:0] are reset.

Also, interrupts associated with a write to UI2XCR, with a write to UADR (UISR[4]) and all synthesizer interrupts. In order to pull a GUS reset, the software should set URSTI[0]=0 for at least 22 (secs and then pull it back high. All enhanced mode applications should pull a GUS reset on exit to ensure that GUS-only applications will work correctly. The DDK calls IwaveGusReset from within IwaveClose.

ARGUMENT(S):
None.

See AlsoRELATED FUNCTION(S):
IwaveClose

FUNCTION: iwinit.h

DESCRIPTION:
This function is the first DDK function your application should call. Its purpose is to initialize the DDK as well as prepare the sound board for operation. The following takes place during the execution of this driver:
The InterWave board is detected and its configuration is extracted. During this process the CSN assigned to the InterWave IC and the PNPRDP address will be determined and stored in members csn and pnprdp respectively of structure iw.
The global DDK variable iw is initialized to reflect the configuration of the InterWave board.
A GUS reset is performed.
The codec is placed in mode 3.
The synthesizer is multiplexed in and codec mode 3 interrupts enabled.
The selected mode of operation of the synth is programmed. Enhanced or GUS compatible mode can be selected.
Local Memory is sized and iw.size_mem is set to the available local memory for the mode selected.
The selected number of voices are initialized. iw.voices holds the number of voices active.
Interrupts and DMA requests are enabled onto ISA bus.
Line inputs, Mic inputs and Line outputs are disabled (UMCR[3:0]=0x0B).
The IWAVE variable iw contains pointers to the DMA and IRQ structures and these are initialized to NULL. If IRQ and DMA services are to be used by the application then, it should register the IRQ and/or DMA structures by a call to IwaveInitStructs.

ARGUMENT(S):

RELATED FUNCTION(S):
IwaveClose, IwaveGusReset.

IwaveClose

Function
Closes down DDK and resets InterWave hardware.

Syntax
void IwaveClose(void)

FUNCTION: iwinit.h

DESCRIPTION:
This function is the last DDK function your application should call. Its purpose is to close down the DDK as well the sound board. The following takes place during the execution of this function:
All sound outputs are muted
The sound board is reset back to GUS mode.
The synthesizer is multiplexed into the mixer section and codec mode 3 interrupts enabled.
The PC’s Interrupt Vector Table is restored.
The generation of Interrupts and DMA requests is disabled.

ARGUMENT(S):
None.

RELATED FUNCTION(S):
IwaveOpen, IwaveGusReset.
Remarks
This function is the last DDK function your application should call. Its purpose is to close down the DDK as well the sound board. The following takes place during the execution of this function:
All sound outputs are muted
The sound board is reset back to GUS mode.
The synthesizer is multiplexed into the mixer section and codec mode 3 interrupts enabled.
The PC’s Interrupt Vector Table is restored.
The generation of Interrupts and DMA requests is disabled.

See Also
IwaveOpen, IwaveGusReset.

IwaveRegisterIRQ

Function
Registers an IRQ variable for InterWave interrupt requests.

Syntax
void IwaveRegisterIRQ(IRQ *irq1, IRQ *irq2)

Remarks
This function can be called to register IRQ structures for an application requiring an IRQ interface to the InterWave hardware. There are two possible IRQ channels associated with the audio device in the InterWave IC. The first channel, selected via register PUI1SI and reflected in UICI[2:0], corresponds to interrupt events originating in the codec, synthesizer, Sound Blaster and AdLib sections of the InterWave IC. The second channel, selected via PUI2SI and reflected in UICI[5:3], corresponds to MIDI interrupt events. It is possible to combine or route all interrupt sources at the InterWave hardware to trigger interrupt events via the first or the second channel only. The DDK takes all this into account when the interface is set up. If your application does not process interrupt events from the audio device this function should not be called at all.

Argument(s)
irq1�This argument is a pointer to an IRQ structure related to Interrupt Request services for the codec, synthesizer, and compatibility emulation. The IRQ level associated with this argument is UICI[2:0]. If UICI[6] and UDCI[7] are both set high, all interrupt requests go through the second channel (UICI[5:3]). Thus the DDK will be set up to process all requests via the second channel. Set this argument to NULL if your application does not process these types of interrupt requests.�����irq2�This argument is a pointer to an IRQ structure related to Interrupt Request services for the MIDI interface. The IRQ level associated with this argument is UICI[5:3]. If UICI[6] is set high and UDCI[7] is set low, all interrupt requests go through the first channel (UICI[2:0]). Thus the DDK will be set up to process all requests via the first channel. Set this argument to NULL if your application does not process MIDI interrupts.��
See Also
IwaveRegisterDMA, IwaveSetInterface.

IwaveRegisterDMA

Function
Registers a DMA variable for InterWave DMA requests.

Syntax
void IwaveRegisterDMA(DMA *dma1, DMA *dma2)

Remarks
This function can be called to register DMA structures for an application requiring DMA interface to the InterWave hardware. There are two possible DMA channels associated with the audio device in the InterWave IC. The first channel, selected via register PUD1SI and reflected in UDCI[2:0], corresponds to DMA events codec record and for system/local memory DMA. The second channel, selected via PUD2SI and reflected in UDCI[5:3], corresponds to codec play DMA events. Note the it is possible to combine or route all DMA sources to trigger DMA requests via the first channel. This is automatically taken into account by the DDK. If your application does not use a DMA interface to the InterWave hardware, this function should not be called at all.

Argument(s)
dma1�This argument is a pointer to a DMA structure related to DMA transfers from system memory to local memory or Codec record channel. The DMA channel associated with this argument is UDCI[2:0]. Set this argument to NULL if your application does not process this type of DMA events.�����dma2�This argument is a pointer to a DMA structure related to DMA transfers for the Codec play channel. The DMA channel associated with this argument is UDCI[5:3]. When UDCI[6] is set high, all DMA requests go through the first channel (UDCI[2:0]) and the DDK will be automatically configured to process all requests through the first channel. Set this argument to NULL if your application does not process this type of DMA events. ��
See Also
IwaveRegisterIRQ, IwaveSetInterface.

IwaveSetInterface

Function
Establishes a DMA and an IRQ interface to the InterWave hardware.

Syntax
void IwaveSetInterface(DMA *dma1, DMA *dma2, IRQ *irq1, IRQ *irq2)

FUNCTION: iwinit.h

RemarksDESCRIPTION:
This function allows an application to register particular DMA and IRQ structures that are intended to carry out DMA and IRQ handling operations between the System and the InterWave-based sound board. The four arguments represent pointers to such structures. If an application makes no use of interrupt services or DMA services whatsoever then this function should not be invoked at all. It should normally be called after a call has been issued to IwaveOpen. If an application only needs services supported via one of the structures, then the arguments corresponding to the others should be set to NULL. Use this function if you intend to establish a DMA and IRQ interface. If you mean to use a DMA interface alone or an IRQ interface alone use the functions IwaveRegisterDMA or IwaveRegisterIRQ instead. This helps keep your code smaller.

If an application needs to perform DMA transfers to Local Memory and needs to service interrupt requests from the synthesizer it should issue the call IwaveSetInterface(&dma1,NULL,&irq1,NULL) where dma1 and irq1 are variables of type DMA and IRQ respectively defined by your application.

Argument(s)ARGUMENT(S):
dma1�This argument is a pointer to a DMA structure related to DMA transfers from system memory to local memory or Codec record channel. The DMA channel associated with this argument is UDCI[2:0]. Set this argument to NULL if your application does not process this type of DMA events.This argument is a pointer to a DMA structure related to DMA transfers from system memory to local memory or Codec record channel. The DMA channel associated with this argument is UDCI[2:0].�����dma2�This argument is a pointer to a DMA structure related to DMA transfers for the Codec play channel. The DMA channel associated with this argument is UDCI[5:3]. When UDCI[6] is set high, all DMA requests go through the first channel (UDCI[2:0]) and the DDK will be automatically configured to process all requests through the first channel. Set this argument to NULL if your application does not process this type of DMA events. This argument is a pointer to a DMA structure related to DMA transfers from local memory to system memory or Codec play channel. The DMA channel associated with this argument is UDCI[5:3].�����irq1�This argument is a pointer to an IRQ structure related to Interrupt Request services for the codec, synthesizer, and compatibility emulation. The IRQ level associated with this argument is UICI[2:0]. If UICI[6] and UDCI[7] are both set high, all interrupt requests go through the second channel (UICI[5:3]). Thus the DDK will be set up to process all requests via the second channel. Set this argument to NULL if your application does not process these types of interrupt requests.This argument is a pointer to an IRQ structure related to Interrupt Request services for the codec, synthesizer, and compatibility emulation. The IRQ level associated with this argument is UICI[2:0].�����irq2�This argument is a pointer to an IRQ structure related to Interrupt Request services for the MIDI interface. The IRQ level associated with this argument is UICI[5:3]. If UICI[6] is set high and UDCI[7] is set low, all interrupt requests go through the first channel (UICI[2:0]). Thus the DDK will be set up to process all requests via the first channel. Set this argument to NULL if your application does not process MIDI interrupts.This argument is a pointer to an IRQ structure related to Interrupt Request services for the MIDI interface. The IRQ level associated with this argument is UICI[5:3].��
USAGE:
If an application needs to perform DMA transfers to Local Memory and requires interrupt services but no other interface services it should issue the call IwaveInitStructs(&dma1,NULL,&irq1,NULL) where dma1 and irq1 are previously defined variables of type DMA and IRQ respectively.

See AlsoRELATED FUNCTION(S):
IwaveRegisterDMA, IwaveRegisterIRQOpen.

IwavePnpSetCfg

Function
Configures InterWave hardware

Syntax
void IwavePnpSetCfg(void)

FUNCTION: iwinit.h

RemarksDESCRIPTION:
This function reads the configuration members of the IWAVE-structure variable iw and configures the I/O space, DMA and IRQ channels on the InterWave IC accordingly for all logical devices. This function is called when an InterWave sound application wishes to re-configure the InterWave IC. It assumes that the card has been properly isolated and that it is in the configuration mode so that its configuration registers can be written.

ARGUMENT(S):

USAGE:
IwavePnpSetCfg(AUDIO_EXT) will read the contents of iw and configure both the audio and the external devices.

See AlsoRELATED FUNCTION(S):
IwavePnpGetCfg.

IwavePnPGetCfg

FunctionFUNCTION:
Retrive configuration data for InterWave hardware. iwinit.h

Syntax
void IwavePnpGetCfg(void)

RemarksDESCRIPTION:
This function loads the configuration members of the IWAVE-structure variable iw with the configuration data for the I/O space, DMA and IRQ channels for all logical devices from the InterWave IC PnP interface. This function is called when an InterWave sound application wishes to retrieve the InterWave IC configuration. It assumes that the card has been properly isolated, selected and that it is in the configuration mode so that its configuration registers can be read.

ARGUMENT(S):

USAGE:
IwavePnpGetCfg(iw.pnprdp) will read the configuration data for both the audio and the external devices into iw.

See AlsoRELATED FUNCTION(S):
IwavePnpSetCfg.

ReadWaveHeader

Function
Reads header in a .wav file.

Syntax
BOOL ReadWaveHeader(BYTE *fname, WAV *wav)
FUNCTION: iwutil.h

RemarksDESCRIPTION:
This function will read in the header of a .WAV sound file. The information extracted from the file will be placed inside the elements of a structure pointed to by wav. This function can be used to help create a wave file player.

Argument(s)ARGUMENT(S):
fname�Name of the *.WAV file whose header is to be read.�����wav�Structure that gets filled with relevant information coming from the file header such as sample rate, length of sound data, data width, etc.��
Return ValueOUTPUT(S):
The function will return FALSE if it fails or TRUE on success.

IwaveRealAddr

Function
Gives synthesizer real address.

Syntax
ADDRESS IwaveRealAddr(WORD high, WORD low, BYTE mode)

FUNCTION: iwutil.h

RemarksDESCRIPTION:
This function translates the contents of the Synthesizer address registers back into real addresses. This are the actual addresses to local memory and the conversion from register or logical addresses to real addresses is based on the table in appendix D.

Argument(s)ARGUMENT(S):
high�This argument must be set to the contents of SAHI, SAEHI, SEAHI or SASHI.�����low�Set this argument to the contents of SALI, SASLI, SAELI or SEALI.�����mode�Set this argument to the contents of the register SACI.��
Return ValueOUTPUT(S):
The return value is a rReal synthesizer address.

IwaveAddrTrans

Function
Gives logical address for 16-bit DMA or synthesizer accesses

Syntax
ADDRESS IwaveAddrTrans(ADDRESS local)
FUNCTION: iwutil.h

RemarksDESCRIPTION:
This function performs an address translation required for 16-bit DMA channels or 16-bit data. When in GUS mode (SGMI[ENH]=0) the translation consists of shifting the first 17 bits of the real address to the right while preserving bits 18 and 19. In enhanced mode (SGMI[ENH]=1), a right shift is required. See page 125 of the functional spec. The address returned can then be written to an address register. Call this function when you need to determine the logical address if you are using 16-bit data while writing to synth or local memory address counters or when writing to DMA address registers while using a 16-bit DMA channel.

Argument(s)ARGUMENT(S):
local�This is a physical or real address to local memory. It will be converted to a logical address depending on the mode of operation of the synth: enhanced or GUS-compatible mode.��
Return ValueOUTPUT(S):
The value returned represents an equivalent logical address that can be written to any of the InterWave’s address registers.

IwaveDelay

Function
Introduces a delay in milliseconds

Syntax
void IwaveDelay(WORD count)

Remarks
This function causes a delay in program execution of up to 52 milliseconds.

Argument(s)
count�delay value in milliseconds. It must be between 1-52 milliseconds.��

IwaveFreeDOS

Function
Frees real-mode memory

Syntax
void IwaveFreeDOS(WORD sel)

Remarks
Allows WATCOM users in protected mode to free real-mode memory allocated with IwaveAllocDOS.

Argument(s)
sel�Selector value.��
See Also
IwaveAllocDOS.

IwaveAllocDOS

Function
Allocates real-mode memory

Syntax
void *IwaveAllocDOS(WORD nbytes, WORD *pseg, WORD *psel)

Remarks
Allows WATCOM users in protected mode to allocate real-mode memory. This memory could be used as a DMA buffer.

Argument(s)
nbytes�Number of bytes to allocate.�����pseg�Pointer to real mode segment is saved�����psel�Pointer to where selector is saved.��
Return Value
Pointer to real-mode buffer.

See Also
IwaveFreeDOS.

GetSamplePosition

Function
Tracks number of bytes transferred in a DMA transfer.

Syntax
WORD GetSamplePosition(DMA *dma)

Remarks

Argument(s)
dma�Pointer to DMA variable corresponding to particular DMA channel.��
See Also
IwaveGetDmaPos.

IwaveGetVect

Function
Gets vector for specified interrupt in IVT.

Syntax
PVI IwaveGetVect(int int_no)

Remarks
Retrives currect vector for handler corresponding to a particular interrupt number from the Interrupt Vector Table.

Argument(s)
int_no�Number of the interrupt.��
Return Value
Address of current handler in IVT.

See Also
IwaveSetVect.

IwaveSetVect

Function
Sets a new handler in IVT for specified interrupt number.

Syntax
void IwaveSetVect(int int_no, PVI isr)

Remarks
Installs a new handler for the specified interrupt number in the PC’s Interrupt Vector Table.

Argument(s)
int_no�Number of the interrupt.�����isr�Address of new handler.��

See Also
IwaveGetVect.

IwaveSetIvt

Function
Installs handlers IwaveSynthHandler and IwaveMidiHandler.

Syntax
void IwaveSetIvt(void)

Remarks
This function re-vectors the interrupt requests iw.synth_irq and iw.midi_irq respectively to point to IwaveSynthHandler and IwaveMidiHandler. This function is automatically called by IwaveRegisterIRQ to install these two handlers.

See Also
IwaveResetIvt.

IwaveResetIvt

Function
De-installs handlers IwaveSynthHandler and IwaveMidiHandler.

Syntax
void IwaveResetIvt(void)

Remarks
This function restores the IVT. This function is automatically called by IwaveClose to de-install IwaveSynthHandler and IwaveMidiHandler.

See Also
IwaveSetIvt.

IwaveUmaskIrqs

Function
Enables IRQs at the PIC.

Syntax
void IwaveUmaskIrqs(void)

Remarks
This function enables IRQs at the PICs. This is done by properly setting the mask register for the particular levels to be enabled at the input to the controller. For this, it issues the appropriate OCW1. The interrupt levels enabled are those associated with iw.synth_irq and iw.midi_irq.

See Also
IwaveMaskIrqs.

IwaveMaskIrqs

Function
Disables IRQs at the PIC..

Syntax
void IwaveMaskIrqs(void)

Remarks
This function disables IRQs at the PICs. This is done by properly setting the mask register for the particular levels to be disabled at the input to the controller. For this, it issues the appropriate OCW1. The interrupt levels disabled are those associated with iw.synth_irq and iw.midi_irq.

See Also
IwaveUmaskIrqs.

IwaveDefFunc

Function
Does nothing.

Syntax
void IwaveDefFunc(void)

Remarks
This is the default callback. This will be called in application did not install any callbacks of its own.

_peek

Function
Reads a byte from a hardware port

Syntax
BYTE _peek(PORT port)

Remarks
Reads a byte from a hardware port. This is an 8-bit read.

Argument(s)
port�Address of port to read from.��
Return Value
Returns an 8-bit value from hardware port.

_peekw

Function
reads a word from a hardware port

Syntax
WORD _peekw(PORT port)

Remarks
Reads a word from a hardware port. This is an 16-bit read.

Argument(s)
port�Address of port to read from.��
Return Value
Returns a 16-bit value from hardware port.

_poke

Function
writes a byte to a hardware port

Syntax
void _poke(PORT port, BYTE value)

Remarks
Writes an 8-bit value to a hardware port.

Argument(s)
port�Address of port to write to.�����value�8-bit value to write.��

_pokew

Function
writes a word to a hardware port

Syntax
void _pokew(PORT port, WORD value)

Remarks
Writes a 16-bit value to a hardware port.

Argument(s)
port�Address of port to write to.�����value�16-bit value to write.��

IwaveGetAddr

Function
Reads local memory pointer.

Syntax
ADDRESS IwaveGetAddr(void)

FUNCTION: iwutil.h

RemarksDESCRIPTION:
This function retrieves the value of the local memory address pointer made up of registers counter (LMALI and LMAHI). These two registers together point to the location where the I/O cycle will reference.

ARGUMENT(S):
None.

Return ValueOUTPUT(S):
The function returns the local memory address counter (LMAHI,LMALI).

IwavePokeEEPROM

Function
Writes data to the serial EEPROM

Syntax
void IwavePokeEEPROM(BYTE *data)
FUNCTION: iwutil.h

RemarksDESCRIPTION:
This function allows the caller to program the contents of the serial EEPROM via PSECI[3:0]. The function places the serial EEPROM in direct-control mode first (PSEENI[0]=1). The serial EEPROM is written starting at address 0 with the data in the buffer pointed to by data (the sole argument). Note that this program is written to program serial EEPROM unit KM93C66 which is a 4K-bit unit organized as 256x16. Compatible units can also be programmed. The function assumes the InterWave IC is in configuration mode (this means a CSN has been assigned to the board). This functions takes care of all the signaling and control of the serial EEPROM by appropriately writing to the bits PSECI[3:0]. See the sample program in Listing 1 for an example of the usage of this function.

Argument(s)ARGUMENT(S):
data�This is a pointer of type BYTE to a buffer holding the bytes of data that will be written to the serial EEPROM. ��
OUTPUT(S):
None

See AlsoRELATED FUNCTION(S):
IwavePeekEEPROM, WriteEnable, WriteOPCode, ReadOPCode.

IwavePeekEEPROM

Function
Reads data from the serial EEPROM.

Syntax
void IwavePeekEEPROM(BYTE *data)

FUNCTION: iwutil.h

RemarksDESCRIPTION:
This function allows the caller to read the contents of the serial EEPROM via PSECI[3:0]. The function places the serial EEPROM in direct-control mode first (PSEENI[0]=1). The buffer pointed to by data is filled with the contents of the serial EEPROM. Note that this program is written to program serial EEPROM unit KM93C66 which is a 4K-bit unit organized as 256x16. The function assumes the InterWave IC is in configuration mode (this means a CSN has been assigned to the board). This functions takes care of all the signaling and control of the serial EEPROM by appropriately writing to the bits PSECI[3:0]. See the sample program in Listing 1 for an example of the usage of this function.

ARGUMENT(S):Argument(s)
data�This is a pointer of type BYTE to a buffer where the data read from the serial EEPROM will be stored. ��
OUTPUT(S):
This function returns the data read from the serial EEPROM in the buffer pointed to by data.

See AlsoRELATED FUNCTION(S):
IwavePokeEEPROM, WriteEnable, WriteOPCode, ReadOPCode.

WriteEnable

Function
Enables writes to serial EEPROM.
�USAGE:

�

Syntax
void WriteEnable(void)
FUNCTION: iwutil.h

RemarksDESCRIPTION:
The KM93C66 is always in a write disable state at power up to protect itself against accidental writes. After power-up any write operation must always be preceded by a write enable. This is accomplished by calling WriteEnable. IwavePokeEEPROM always calls WriteEnable to make sure that all writes are successful. Note that this write-enable condition will be preserved until power is removed or the write disable instruction is carried out. IwavePokeEEPROM will not issue a write disable instruction in order to keep code small. You are likely to remove power from the IC sometime and this action will lock out any unintended writes.

ARGUMENT(S):
None

OUTPUT(S):
None

See AlsoRELATED FUNCTION(S):
IwavePokeEEPROM, ReadEnable, WriteOPCode, ReadOPCode.

WriteOPCode

Function
Sends write code to serial EEPROM before each write.

Syntax
void WriteOPCode(void)
FUNCTION: iwutil.h

RemarksDESCRIPTION:
This function sends the bit string that specifies a write operation (101) to the KM93C66 serial EEPROM. This code always precedes the address bit string. This function is called by IwavePokeEEPROM for each write.

ARGUMENT(S):
None

OUTPUT(S):
None

See AlsoRELATED FUNCTION(S):
IwavePokeEEPROM, IwavePeekEEPROM, WriteEnable, ReadOPCode.

ReadOPCode

Function
Sends read code to serial EEPROM before each read.

Syntax
void ReadOPCode(void)FUNCTION: iwutil.h

RemarksDESCRIPTION:
This function sends the bit string that specifies a read operation (100) to the KM93C66 serial EEPROM. This code always precedes the address bit string. This function is called by IwavePeekEEPROM for each read.

ARGUMENT(S):
None

OUTPUT(S):
None

See AlsoRELATED FUNCTION(S):
IwavePokeEEPROM, IwavePeekEEPROM, WriteEnable, WriteOPCode.

IwaveRegPeek

Function
Reads an InterWave register

Syntax
WORD IwaveRegPeek(DWORD reg_name)

Remarks
This function reads and returns the value stored in the specified register. The register is specified by using a symbolic constant named after the actual register within the InterWave IC. To correctly use this function, the programmer must use the mnemonics for the names of the registers defined in iwdefs.h. These mnemonics contain coded information used by the function to properly access the desired register. An attempt to read from a write-only register will return meaningless data.

Argument(s)

reg_name�Mnemonic representing the name of the register. For instance UMCR, LDMACI, LMCI , etc.��
Return Value
The function returns the value stored in any readable register.

See Also
IwaveRegPoke.

IwaveRegPoke

Function
Writes to an InterWave register.

Syntax
void IwaveRegPoke(DWORD reg_name, WORD value)

Remarks
This function writes a value to any writable InterWave register. To correctly use this function, the programmer must use the mnemonics for the register names defined in iwdefs.h. These mnemonics contain coded information used by the function to properly access the desired register. This function does not guard against writing to read-only registers. It is the programmer's responsibility to ensure that the writes are to valid registers.

Arguments

reg_name�Mnemonic representing the name of the register. For instance UMCR, LDMACI, LMCI , etc.�����value�Value to be written to the register��
See Also
IwaveRegPeek.

IwaveMemCfg

Function
Determines configuration of local memory DRAM.

Syntax
void IwaveMemCfg(void)

Remarks
This function determines the amount of DRAM from its configuration across all banks. It sets the configuration into register LMCFI and stores the total amount of DRAM into iw.size_mem (Kbytes). The function first places the IC in enhanced mode to allow full access to all DRAM locations. Then it selects full addressing span (LMCFI[3:0]=0Ch). Finally, it determines the amount of DRAM in each bank and from this the actual configuration. Note that if a configuration other than one indicated in the manual is implemented, this function will select full addressing span LMCFI[3:0]=0Ch).

See Also
IwaveMemSize.

IwaveMemSize

Function
Determines the size of local memory available.

Syntax
WORD IwaveMemSize(void)

Remarks
This function returns the number of Kbytes available as local memory attached to the InterWave IC. The value returned by this function reflects the effective or actual amount of DRAM that can be accessed based on the mode of operation of the InterWave IC. This is determined by SGMI[ENH].

Return Value
Number of Kbytes of DRAM attached to the InterWave IC.

See Also
IwaveMemCfg.

IwavePokeBlock

Function
Writes a block of data to local memory bytewise.

Syntax
void IwavePokeBlock(BYTE far *block, DWORD len, ADDRESS addr)

Remarks
This function can be used to write entire blocks of data from local memory. It starts by enabling the auto-increment feature of the InterWave IC whereby each write will cause the local memory address to be incremented by one. This function transfers the data by 8-bit access via the LMBDR register.

Arguments

block�This is a pointer to a buffer holding data to be downloaded to local memory.�����len�This is the length of the block of data.�����addr�This is the local memory base address where the data are to be stored. ��

See Also
IwavePeekBlock, IwavePokeBlockW, IwavePeekBlockW.

IwavePeekBlock

Function
Reads block of data to local memory bytewise

Syntax
void IwavePeekBlock(BYTE far *block, DWORD len, ADDRESS addr)

Remarks
This function can be used to read entire blocks of data from local memory. It starts by enabling the auto-increment feature of the InterWave IC whereby each read will cause the local memory address to be incremented by one. This function transfers the data by 8-bit access via the LMBDR register.

Arguments

block�This is a pointer to a buffer to used to store the data to be uploaded from local memory.�����len�This is the length of the block of data.�����addr�This is the local memory base address where the data are to be read from. ��

See Also
IwavePokeBlock, IwavePokeBlockW, IwavePeekBlockW.

IwavePokeBlockW

Function
Writes block of data to local memory

Syntax
void IwavePokeBlockW(WORD far *block, DWORD len, ADDRESS addr)

Remarks
This function can be used to write entire blocks of data from local memory. It starts by enabling the auto-increment feature of the InterWave IC whereby each write will cause the local memory address to be incremented by two. This function transfers the data by 16-bit access via the LMSBAI register.

Arguments

block�This is a pointer to a buffer holding the data to be downloaded from local memory.�����len�This is the length of the block of data.�����addr�This is the local memory base address where the data are to be stored. ��

See Also
IwavePokeBlock, IwavePeekBlock, IwavePeekBlockW.

IwavePeekBlockW

Function
Reads block of data from local memory.

Syntax
void IwavePeekBlockW(WORD far *block, DWORD len, ADDRESS addr)

Remarks
This function can be used to read entire blocks of data from local memory. It starts by enabling the auto-increment feature of the InterWave IC whereby each read will cause the local memory address to be incremented by two. This function transfers the data by 16-bit access via the LMSBAI register.

Argument(s)

block�This is a pointer to a buffer to used to store the data to be uploaded to system memory.�����len�This is the length of the block of data.�����addr�This is the local memory base address where the data are to be read from. ��
See Also
IwavePokeBlock, IwavePokeBlockW, IwavePeekBlock.

IwaveMemPoke

Function
Writes a byte of data to local memory.

Syntax
void IwaveMemPoke(ADDRESS addr, BYTE value)

Remarks
This function pokes a byte of data to local memory into a specified address. Access is via register LMBDR register. There is a function IwaveMemPokeW which is similar to this but writes a 16-bit value instead.

Argument(s)

addr�This is the local memory address to write to. �����value�This is the value to write into local memory��
See Also
IwavePokeBlock, IwavePeekBlock, IwaveMemPeek, IwaveMemPokeW, IwaveMemPokeW.

IwaveMemPeek

Function
Reads a byte of data from local memory.

Syntax
BYTE IwaveMemPeek(ADDRESS addr)

Remarks
This function reads a byte of data from the specified local memory address. Access is via register LMBDR register. There is a function IwaveMemPeekW which is similar to this but reads a 16-bit value instead.

Argument(s)

addr�This is the local memory address to be read from. ��
See Also
IwavePokeBlock, IwavePeekBlock, IwaveMemPoke, IwaveMemPokeW, IwaveMemPokeW.

IwaveMemAvail

Function
Returns total memory available in local memory pool.

Syntax
DWORD IwaveMemAvail(void)

Remarks
This function returns the total amount of memory in bytes currently available in the local memory pool. This represents the addition of all available memory chunks.

Return Value
It returns the total amount of memory in bytes available from the memory pool.

See Also
IwaveMemInit, IwaveMaxAlloc, IwaveMemFree, IwaveMemAlloc.

IwaveMaxAlloc

Function
Returns size of largest block available from memory pool.

Syntax
DWORD IwaveMaxAlloc(void)

Remarks
This function returns the size in bytes of the largest block of local memory currently available from the memory pool. If the InterWave IC is operating in enhanced mode this block can not be greater than than 256Kbytes. This function can be used to determine if there is a block of memory large enough available to honor an apllication’s request.

Return Value
It returns the size in bytes of the largest memory chunk available from the memory pool.

See Also
IwaveMemInit, IwaveMemAvail, IwaveMemFree, IwaveMemAlloc.

IwaveMemAlloc

Function
Allocates a block of memory from the local memory pool.

Syntax
ADDRESS IwaveMemAlloc(DWORD size)

Remarks
This function allocates a block of memory from the local memory pool requested by an application. The requested size in bytes will be rounded up to the next 32-byte boundary when the InterWave IC is in GUS mode or to an even byte when in enhanced mode. The function returns the memory address where the block is located if successful. Otherwise, it returns ALLOC_FAILURE. The input to this function is argument “size” in bytes of the block to allocate.

Argument(s)

size�Size in bytes of the block to allocate.��
Return Value
The function returns the base address of the local memory block allocated.

See Also
IwaveMemInit, IwaveMemAvail, IwaveMemFree, IwaveMaxAlloc.

IwaveMemFree

Function
Releases memory to memory pool.

Syntax
BOOL IwaveMemFree(DWORD size, ADDRESS blk_addr)

Remarks
This function releases or de-allocates blocks of local memory that were allocated with IwaveMemAlloc. The block is returned to the free-block chain. As a last step, the function will merge together all adjacent free blocks into a single block. The function will return TRUE if successful or FALSE if the Local Memory has been corrupted. The function takes the following arguments:

Argument(s)

size�Size in bytes of the memory block to free up.�����blk_addr�Base address of the block to be de-allocated.��
Return Value
The function returns TRUE if successful or FALSE if it failed to release memory.

See Also
IwaveMemInit, IwaveMemAvail, IwaveMemAlloc, IwaveMaxAlloc.

IwaveMemInit

Function
Sets up a local memory pool for memory management.

Syntax
BOOL IwaveMemInit(void)

Remarks
This function initializes the Local Memory so that memory allocation and de-allocation can be performed. Note that in GUS mode, the greatest chunk of memory that can be allocated can be no more than 256KB. An application can reserve a certain amount of LM, which must be >= 0 bytes and <= 256KB in GUS mode. In Enhanced Mode, such limitations do not exist.

Return Value
The function returns TRUE if successful or FALSE if it failed to set up the free memory chain.

See Also
IwaveMemFree, IwaveMemAvail, IwaveMemAlloc, IwaveMaxAlloc.

IwaveDmaXfer

Function
Sets up a local memory DMA transfer.

Syntax
FLAG IwaveDmaXfer(DMA *dma, WORD size)

Remarks
This function is an upper level driver that programs the DMA controller, the InterWave IC and triggers a DMA transfer to or from local memory. The function will return DMA_OK if no problems were encountered.

Argument(s)

dma�This is a pointer to a DMA structure which must have been properly initialized by a call to function IwaveRegisterDMA.�����size�This is the number of bytes to DMA.��
Remarks
This function returns DMA_OK if successful.

See Also
IwaveDmaPage, IwaveDmaCtrl, IwaveDmaNext, IwaveDmaIleaved.

IwaveDmaCtrl

Function
Initializes DMA controller and DMA interface.

Syntax
FLAG IwaveDmaCtrl(DMA *dma, WORD size)

Remarks
This function readies the DMA controller on the PC for an impending DMA transfer and also initializes the DMA structure pointed to by dma. It then calls IwaveDmaPgm to program the DMA controller. It does NOT start the transfer.

Argument(s)

dma�This is a pointer to a DMA structure which must have been properly initialized by a call to function IwaveRegisterDMA.�����size�This is the number of bytes to DMA.��
Return Value
This function returns DMA_OK if successful.

See Also
IwaveDmaPage, IwaveDmaXfer, IwaveDmaNext, IwaveDmaIleaved.

IwaveDmaIleaved

Function
Executes an Interleaved DMA transfer.

Syntax
FLAG IwaveDmaIleaved(DMA *dma, WORD ctrl, BYTE tracks, WORD size)

Remarks
This function programs the InterWave IC for an Interleaved DMA transfer. It sets up the Interleaved DMA Control register LDICI and the address register LDIBI. Notice that the local memory base address must be aligned to a 256 byte boundary. This function will trigger the DMA transfer.

Argument(s)

dma�This is a pointer to a DMA structure which must have been properly initialized by a call to function IwaveRegisterDMA.�����ctrl�This is a control argument that allows you to specify the data width (8 or 16 bits) and whether to inverst the most significant bit of the data. Set it to any of the following:
IDMA_INV for 8-bit data with MSB inverted.
IDMA_WIDTH_16 for 16-bit data with no MSB inversion.
IDMA_INV | IDMA_WIDTH_16 for 16-bit data with MSB inverted.
0 for 8-bit data with no MSB inversion.�����tracks�This is the number of tracks. This can be from 0 to 31.�����size�This is the number of bytes to DMA.��
See Also
IwaveDmaPage, IwaveDmaXfer, IwaveDmaNext, IwaveDmaCtrl.

IwaveDmaPage

Function
Transfers up to one DMA page.

Syntax
FLAG IwaveDmaPage(DMA *dma, WORD size)

Remarks
This function programs the InterWave IC and then initiates the transfer of up to one DMA page to/from the InterWave board.

Argument(s)

dma�This is a pointer to a DMA structure which must have been properly initialized by a call to function IwaveRegisterDMA.�����size�This is the number of bytes to DMA.��
Return Value
The function returns DMA_OK if successful or ~DMA_OK when it fails.

See Also
IwaveDmaIleaved, IwaveDmaXfer, IwaveDmaNext, IwaveDmaCtrl.

IwaveDmaPgm

Function
Programs DMA controller.

Syntax
void IwaveDmaPgm(DMA *dma)

Remarks
This function does the programming of the DMA controller with the appropriate settings for the DMA channel reflected in the variable pointed to by dma.

Argument(s)

dma�This is a pointer to a DMA structure which must have been properly initialized by a call to function IwaveRegisterDMA.��
See Also
IwaveDmaCtrl.

IwaveDmaMalloc

Function
Allocates up to a DMA page buffer in the far heap.

Syntax
void far *IwaveDmaMalloc(WORD buffsize)

Remarks
This function allows a calling program to allocate memory that lies within a DMA page in system memory. This utility is provided so that applications can perform DMA transfers with the DMA controller operating in auto-initialization mode. Use this function only if allocating space for this type of transfers, otherwise use the regular routines that come with your compiler.

Argument(s)

buffsize�This is the size in bytes of the DMA buffer. It can be up to 64Kbytes (a DMA page)��
Return Value
The function returns NULL if it fails to allocate the buffer. Otherwise it returns a valid pointer.

See Also
IwaveAllocDOS, IwaveFreeDOS.

IwaveDmaWait

Function
Blocks until DMA transfer is completed.

Syntax
void IwaveDmaWait(void)

Remarks
This function will block execution until a specific DMA transfer has completed. The function monitors the third bit in iw.flags which is cleared by the interrupt handler when the DMA is completed.

IwaveDmaNext

Function
Sends DMA data from second page.

Syntax
void IwaveDmaNext(DMA *dma)

Remarks
In cases where the data to be DMA'd crosses over one DMA page in PC RAM, this function will be called by the DMA handler to send the data in the second DMA page. There exists the possibility that a DMA buffer will be partially in two contiguous DMA pages and in such a case the DMA transfer will be automatically split into two transfers: one to DMA the data in the first page and another to DMA the data in the second page.

Argument(s)

dma�This is a pointer to a DMA structure which must have been properly initialized by a call to function IwaveRegisterDMA.��

IwaveGetDmaPos

Function
Reads current count register in DMA controller.

Syntax
WORD IwaveGetDmaPos(DMA *dma)

Remarks
This function is provided to allow an application to read the current count register within the DMA controller in order to determine its current position in a transfer.

Arguments

dma�This is a pointer to a DMA structure which must have been properly initialized by a call to function IwaveRegisterDMA.��
Return Value
The output is a 16-bit value representing the contents of the DMA controller’s current count register (down counter)

See Also
GetSamplePosition.

IwaveSynthHandler

Function
Synthesizer interrupt request handler.

Syntax
static void interrupt IwaveSynthHandler(void)

Remarks
This function is the interrupt handler for the interrupt requests originating at the codec, synthesizer, compatibility sections. This is the code that takes over immediately after the interrupt occurs. All it does is to send EOI to the controller(s) to allow further interrupts and then calls a function that will eventually route the request to the appropriate function.

See Also
IwaveMidiHandler.

IwaveMidiHandler

Function
MIDI interrupt request handler.

Syntax
static void interrupt IwaveMidiHandler(void)

Remarks
This function is the interrupt handler for the MIDI interrupt requests. This is the code that takes over immediately after the interrupt occurs. All it does is to send EOI to the controller(s) to allow further interrupts and then calls a function that will eventually route the request to the appropriate function.

See Also
IwaveMidiHandler.

IwaveHandler

Function
Main IRQ router for both MIDI and synthesizer, codec.

Syntax
static void IwaveHandler(void)

Remarks
This function is to act as a routing point to service all interrupt requests from the InterWave IC. It identifies the source of the interrupt by reading register UISR or CSR1R (codec) and then calls all necessary callbacks. These registers are read until all interrupts are serviced. This function will service all interrupts for as long as they continue to occur.

See Also
IwaveMidiHandler, IwaveSynthHandler.

IwaveHandleVoice

Function
Handles voice interrupts.

Syntax
static void IwaveHandleVoice(void)

Remarks
This function handles interrupts caused by a particular synth voice when such voice has either crossed an address boundary or a volume boundary. Register SVII contains the number of the voice that caused the interrupt as well as the source (wavetable or volume ramp). Note that SVII[7] and SVII[6] are 0 when the corresponding interrupt has occurred and SVII[5] is always 1. Indexing this register with IGIDX=8F clears all internally stored interrupt conditions. Indexing this register with IGIDXR=9F preserves all internal interrupt indicators.

See Also
IwaveMidiHandler, IwaveSynthHandler.

IwaveHandleCodec

Function
Handles codec’s interrupts.

Syntax
static void IwaveHandleCodec(void)

Remarks
This function determines the source of an interrupt within the codec and activates the appropriate registered callback for processing.

See Also
IwaveMidiHandler, IwaveSynthHandler.

IwaveHandleDma

Function
Handles local memory DMA interrupts.

Syntax
static void IwaveHandleDma(void)

Remarks
This function determines the source of an interrupt within the local memory controller and activates the appropriate registered callback for processing. Both normal and interleaved DMA related interrupts are processed by this handler.

See Also
IwaveMidiHandler, IwaveSynthHandler.

__
IwaveSetCallback

Function
Registers a callback for interrupt events.

Syntax
PFV IwaveSetCallback(PVF handler, BYTE handle)

Remarks
This function installs or registers a callback function for different IRQ events from the InterWave hardware. All callbacks are registered in variable iw . All callbacks are set to point to a default callback function at start up time which simply executes a return. This default setting is provided to prevent possible system crashes should spurious interrupts occur for events without registered callbacks.

Argument(s)

handler�This is a pointer to a function defined by a DDK application and that will be called on a particular interrupt event.�����handle�This is an integer type that identifies the particular callback to be registered. Set it to any of the following:

PLAY_DMA_HANDLER for local memory DMA events (To local memory).
REC_DMA_HANDLER for local memory DMA events (From local memory).
MIDI_TX_HANDLER for MIDI transmit interrupt requests.
MIDI_RX_HANDLER for MIDI receive interrupt requests.
TIMER1_HANDLER for AdLib timer 1 interrupts.
TIMER2_HANDLER for AdLib timer 2 interrupts.
WAVE_HANDLER for interrupts caused by voices crossing wavetable boundaries.
VOLUME_HANDLER for interrupts caused by voices crossing volume boudaries.
CODEC_TIMER_HANDLER for codec timer interrupts.
CODEC_PLAY_HANDLER for codec play path interrupts.
CODEC_REC_HANDLER for codec record path interrupts.
��

Return Value
The function will return the address of the previous registered callback for the particular type of events.

�APPENDIX C
DDK QUICK REFERENCE GUIDE

The following tables contain a brief description of available DDK drivers that could be used to write applications for the InterWave IC. These tables are meant to serve as a quick reference to the DDK functions. For more detailed information on the DDK functions, see the appendix B where you will find the man pages detailing their syntax.

MEMORY MANAGEMENT DRIVERS

DMA DRIVERS.

INITIALIZATION DRIVERS

SYNTHESIZER DRIVERS

CODEC DRIVERS

INTERRUPT AND UTILITY DRIVERS

Total No. of drivers = 124. (This figure may increase or decrease as needed)

�
__
APPENDIX A
 SAMPLE PLUG-AND-PLAY RESOURCE MAP

__

The following is a sample resource map for an InterWave board with an EISA-assigned vendor ID of AMD, a vendor assigned product number of 0x2001 and a serial number of 0x11223344. You will change these items to reflect values assigned by your company for your particular board. Note that the checksum in the 9th byte is calculated over all first 8 bytes in a manner prescribed by the Plug and Play ISA specification.

APPENDIX C MIXER AND ANALOG FUNCTIONS
__

This is a drawing that will prove extremely helpful when using the codec DDK functions.

�EMBED MSDraw * mergeformat���

�
__
APPENDIX A
 SAMPLE PLUG-AND-PLAY RESOURCE MAP

__

The following is a sample resource map for an InterWave board with an EISA-assigned vendor ID of AMD, a vendor assigned product number of 0x2001 and a serial number of 0x11223344. You will change these items to reflect values assigned by your company for your particular board. Note that the checksum in the 9th byte is calculated over all first 8 bytes in a manner prescribed by the Plug and Play ISA specification.

APPENDIX D SAMPLE PLUG-AND-PLAY RESOURCE MAP
__

The following is a sample resource map for an InterWave board with an EISA-assigned vendor ID of ADV, a vendor assigned product number of 550Ah and a serial number of 00000001h. You will change these items as well as others to reflect values assigned by your company for your particular board. Note that the checksum in the 9th byte is calculated over all first 8 bytes in a manner prescribed by the Plug and Play ISA specification 1.0A. Note the dependent functions defined to reflect how the I/O spaces for P2XR, P3XR and PCODAR relate to one another. This relationship is such that P3XR=P2XR+100h and PCODAR=P2XR+10Ch.

(�;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Plug and Play Header
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x04 ; Vendor ID Byte 0
DB 0x96 ; Vendor ID Byte 1
DB 0x55 ; Vendor assigned product number (byte 0)
DB 0x0A ; Vendor assigned product number (byte 1)
DB 0x01 ; Serial Number Byte 0
DB 0x00 ; Serial Number Byte 1
DB 0x00 ; Serial Number Byte 2
DB 0x00 ; Serial Number Byte 3
DB 0x3d ; checksum calculated on above bits
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Plug and Play Version
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
0x0A ; small item, plug and play version tag
0x10 ; packed BCD, version 1.0
0x10 ; vendor specified product number (1.0)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Identifier String (ANSI)
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x82 ; large item, identifier string tag
DB 0x0F ; length byte 0 (15)
DB 0x00 ; length byte 1
DB 0x49 ; I (identifier string is InterWave Audio)
DB 0x6E ; n
DB 0x74 ; t
DB 0x65 ; e
DB 0x72 ; r
DB 0x57 ; W
DB 0x61 ; a
DB 0x76 ; v
DB 0x65 ; e
DB 0x20
DB 0x41 ; A
DB 0x75 ; u
DB 0x64 ; d
DB 0x69 ; i
DB 0x6F ; o
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Audio Logical Dev ID
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x15 ; small item, logical dev tag
DB 0x04 ; Vendor ID Byte 0
DB 0x96 ; Vendor ID Byte 1
DB 0x00 ; Vendor assigned function ID (Byte 0)
DB 0x00 ; Vendor assigned function ID (Byte 1)
DB 0x02 ; flags[1] - supports commands at index 0x31
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; IRQ Descriptors
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x22 ; small item, irq1 tag (Synth, codec, compatibility)
DB 0xAC ; IRQ2/9, IRQ3, IRQ5 and IRQ7 supported
DB 0x98 ; IRQ15, IRQ12 and IRQ11 supported
;
DB 0x22 ; small item, irq2 tag (MIDI IRQ)
DB 0xAC ; IRQ2/9, IRQ3, IRQ5 and IRQ7 supported
DB 0x98 ; IRQ15, IRQ12 and IRQ11 supported
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; DMA Descriptors
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x2A ; small item, dma1 tag
DB 0xEB ; DRQ0, DRQ1,DRQ3,DRQ5,DRQ6, DRQ7 supported
DB 0x01 ; 8 and 16-bit DMA transfer type.
;
DB 0x2A ; small item, dma2 tag
DB 0xEB ; DRQ0, DRQ1, DRQ3, DRQ5, DRQ6, DRQ7 supported
DB 0x01 ; 8 and 16-bit DMA transfer type.
;
DB 0x310 ; small item, start dependent function 0
DB 0x00
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; I/O Descriptors
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x4B7 ; small item, I/O port tag
DB 0x00 ; decodes 10-bit ISA bus only
DB 0x20 ; min base addr 0x220 (P2XR)
DB 0x02 ;
DB 0x20 ; max base addr 0x220 (P2XR)
DB 0x02 ;
DB 0x10 ; align to 16-byte boundary
DB 0x10 ; 16 ports
;
DB 0x4B7 ; small item, I/O port tag
DB 0x00 ; decodes 10-bit ISA bus only
DB 0x20 ; min base addr 0x320 (P3XR)
DB 0x03 ;
DB 0x20 ; max base addr 0x320 (P3XR)
DB 0x03 ;
DB 0x08 ; align to 8-byte boundary
DB 0x08 ; 8 ports
;
DB 0x4B ; I/O descriptor tag - codec’s PCODAR
DB 0x2C ; min base addr 0x32C
DB 0x03
DB 0x04 ; 4 contiguous ports

;
DB 0x310 ; small item, start dependent function 1
DB 0x01
;
DB 0x4B7 ; small item, I/O port tag
DB 0x00 ; decodes 10-bit ISA bus only
DB 0x30 ; min base addr 0x230 (P2XR)
DB 0x02 ;
DB 0x30 ; max base addr 0x230 (P2XR)
DB 0x02 ;
DB 0x10 ; align to 16-byte boundary
DB 0x10 ; 16 ports
;
DB 0x4B7 ; small item, I/O port tag
DB 0x00 ; decodes 10-bit ISA bus only
DB 0x30 ; min base addr 0x330 (P3XR)
DB 0x03 ;
DB 0x30 ; max base addr 0x330 (P3XR)
DB 0x03 ;
DB 0x08 ; align to 8-byte boundary
DB 0x08 ; 8 ports
;
DB 0x4B ; I/O descriptor tag - codec’s PCODAR
DB 0x3C ; base addr 0x32C
DB 0x03
DB 0x04 ; 4 contiguous ports

;
DB 0x310 ; small item, start dependent function 2
DB 0x00
;
DB 0x4B7 ; small item, I/O port tag
DB 0x00 ; decodes 10-bit ISA bus only
DB 0x40 ; min base addr 0x240 (P2XR)
DB 0x02 ;
DB 0x40 ; max base addr 0x240 (P2XR)
DB 0x02 ;
DB 0x10 ; align to 16-byte boundary
DB 0x10 ; 16 ports
;
DB 0x4B7 ; small item, I/O port tag
DB 0x00 ; decodes 10-bit ISA bus only
DDB 0x40 ; min base addr 0x340 (P3XR)
DB 0x03 ;
DB 0x40 ; max base addr 0x340 (P3XR)
DB 0x03 ;
DB 0x08 ; align to 8-byte boundary
DB 0x08 ; 8 ports
;
DB 0x4B ; I/O descriptor tag - codec’s PCODAR
DB 0x4C ; base addr 0x34C
DB 0x03
DB 0x04 ; 4 contiguous ports

;
DB 0x310 ; small item, start dependent function 3
DB 0x01
;
DB 0x4B7 ; small item, I/O port tag
DB 0x00 ; decodes 10-bit ISA bus only
DB 0x50 ; min base addr 0x250 (P2XR)
DB 0x02 ;
DB 0x50 ; max base addr 0x250 (P2XR)
DB 0x02 ;
DB 0x10 ; align to 16-byte boundary
DB 0x10 ; 16 ports
;
DB 0x4B7 ; small item, I/O port tag
DB 0x00 ; decodes 10-bit ISA bus only
DB 0x50 ; min base addr 0x350 (P3XR)
DB 0x03 ;
DB 0x50 ; max base addr 0x350 (P3XR)
DB 0x03 ;
DB 0x08 ; align to 8-byte boundary
DB 0x08 ; 8 ports
;
DB 0x4B ; I/O descriptor tag - codec’s PCODAR
DB 0x5C ; base addr 0x35C
DB 0x03
DB 0x04 ; 4 contiguous ports

;
DB 0x310 ; small item, start dependent function 43
DB 0x01 ; acceptable configuration
;
DB 0x4B7 ; small item, I/O port tag
DB 0x00 ; decodes 10-bit ISA bus only
DB 0x60 ; min base addr 0x260 (P2XR)
DB 0x02 ;
DB 0x60 ; max base addr 0x260 (P2XR)
DB 0x02 ;
DB 0x10 ; align to 16-byte boundary
DB 0x10 ; 16 ports
;
DB 0x4B7 ; small item, I/O port tag
DB 0x00 ; decodes 10-bit ISA bus only
DB 0x60 ; min base addr 0x360 (P3XR)
DB 0x03 ;
DB 0x60 ; max base addr 0x360 (P3XR)
DB 0x03 ;
DB 0x08 ; align to 8-byte boundary
DB 0x08 ; 8 ports
;
DB 0x4B ; I/O descriptor tag - codec’s PCODAR
DB 0x6C ; base addr 0x36C
DB 0x03
DB 0x04 ; 4 contiguous ports
;
DB 0x31 ; small item, start dependent function 5
DB 0x01 ; acceptable configuration
;
DB 0x4B ; small item, I/O port tag
DB 0x70 ; base addr 0x270 (P2XR)
DB 0x02 ;
DB 0x10 ; 16 ports
;
DB 0x4B ; small item, I/O port tag
DB 0x70 ; min base addr 0x370 (P3XR)
DB 0x03 ;
DB 0x08 ; 8 ports
;
DB 0x4B ; I/O descriptor tag - codec’s PCODAR
DB 0x7C ; base addr 0x37C
DB 0x03
DB 0x04 ; 4 contiguous ports
;
DB 0x31 ; small item, start dependent function 6
DB 0x01 ; acceptable configuration
;
DB 0x4B ; small item, I/O port tag
DB 0x80 ; base addr 0x280 (P2XR)
DB 0x02 ;
DB 0x10 ; 16 ports
;
DB 0x4B ; small item, I/O port tag
DB 0x80 ; min base addr 0x380 (P3XR)
DB 0x03 ;
DB 0x08 ; 8 ports
;
DB 0x4B ; I/O descriptor tag - codec’s PCODAR
DB 0x8C ; base addr 0x38C
DB 0x03
DB 0x04 ; 4 contiguous ports
;
DB 0x31 ; small item, start dependent function 7
DB 0x01 ; acceptable configuration
;
DB 0x4B ; small item, I/O port tag
DB 0x90 ; base addr 0x290 (P2XR)
DB 0x02 ;
DB 0x10 ; 16 contiguous ports
;
DB 0x4B ; small item, I/O port tag
DB 0x90 ; min base addr 0x390 (P3XR)
DB 0x03 ;
DB 0x08 ; 8 ports
;
DB 0x4B ; I/O descriptor tag - codec’s PCODAR
DB 0x9C ; base addr 0x39C
DB 0x03
DB 0x04 ; 4 contiguous ports

;
DB 0x38 ; end dependent function tag
;
DB 0x47 ; I/O descriptor tag - codec’s PCODAR
DB 0x00 ; board does not decode the full 16-bit ISA addr
DB 0x00 ; min base addr 0x200
DB 0x02
DB 0xFC ; max base addr 0x3FC
DB 0x03
DB 0x04 ; alignment
DB 0x04 ; 4 contiguous ports
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; External Logical Dev ID
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x15 ; small item, logical dev tag
DB 0x04 ; Vendor ID Byte 0
DB 0x96 ; Vendor ID Byte 1
DB 0x00 ; Vendor assigned function ID (Byte 0)
DB 0x01 ; Vendor assigned function ID (Byte 1)
DB 0x02 ; flags[1] - supports commands at index 0x31
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; DMA Descriptor
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x2A ; small item, dma tag
DB 0xEB ; DRQ0, DRQ1,DRQ3,DRQ5,DRQ6, DRQ7 supported
DB 0x01 ; 8 and 16-bit DMA transfer type
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; IRQ Descriptor
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x22 ; small item, irq tag
DB 0xAC ; IRQ2/9, IRQ3, IRQ5 and IRQ7 supported
DB 0x98 ; IRQ15, IRQ12 and IRQ11 supported
;
DB 0x30 ; small item, start dependent function 0
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; I/O Descriptors
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x4B7 ; I/O descriptor tag - PCDRAR
DB 0x00 ; board does not decode the full 16-bit ISA addr
DB 0x7F0 ; min base addr 0x17F0
DB 0x01
DB 0xF0 ; max base addr 0x1F0
DB 0x01
DB 0x08 ; alignment
DB 0x08 ; 8 contiguous ports
;
DB 0x4B7 ; I/O descriptor tag - PATAAR
DB 0x00 ; board does not decode the full 16-bit ISA addr
DB 0x7F6 ; min base addr 0x37F6
DB 0x03
DB 0xF6 ; max base addr 0x3F6
DB 0x03
DB 0x02 ; alignment
DB 0x02 ; 2 contiguous ports
;
DB 0x30 ; small item, start dependent function 1
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; I/O Descriptors
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x4B7 ; I/O descriptor tag - PCDRAR
DB 0x00 ; board does not decode the full 16-bit ISA addr
DB 0x700 ; min base addr 0x2070
DB 0x022
DB 0xF8 ; max base addr 0x3F8
DB 0x03
DB 0x08 ; alignment
DB 0x08 ; 8 contiguous ports
;
DB 0x4B7 ; I/O descriptor tag - PATAAR
DB 0x00 ; board does not decode the full 16-bit ISA addr
DB 0x8600 ; min base addr 0x386200
DB 0x032
DB 0xFE ; max base addr 0x3FE
DB 0x03
DB 0x02 ; alignment
DB 0x02 ; 2 contiguous ports
;
DB 0x38 ; end dependent function tag
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; GAME Logical Dev ID
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x15 ; small item, external logical dev tag
DB 0x04 ; Vendor ID Byte 0
DB 0x96 ; Vendor ID Byte 1
DB 0x00 ; Vendor assigned function ID (Byte 0)
DB 0x02 ; Vendor assigned function ID (Byte 1)
DB 0x02 ; flags[1] - supports commands at index 0x31
;
DB 0x310 ; small item, start dependent function 0
DB 0x00
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; I/O Descriptors
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x4B7 ; I/O descriptor tag - P201AR
DB 0x00 ; board does not decode the full 16-bit ISA addr
DB 0x01 ; min base addr 0x201
DB 0x02
DB 0x01 ; max base addr 0x201
DB 0x02
DB 0x01 ; alignment
DB 0x01 ; 1 port
;
DB 0x310 ; small item, start dependent function 1
DB 0x02 ; sub-optimal configuration but willing to accept
;
DB 0x47 ; I/O descriptor tag - P201AR
DB 0x00 ; board does not decode the full 16-bit ISA addr
DB 0x41 ; min base addr 0x241
DB 0x02
DB 0xC1 ; max base addr 0x3C1
DB 0x03
DB 0x40 ; alignment
DB 0x01 ; 1 port
;
DB 0x38 ; end dependent function tag
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; Sound Blaster/AdLib
; Logical Dev ID
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x15 ; small item, external logical dev tag
DB 0x05 ; Vendor ID Byte 0
DB 0xA4 ; Vendor ID Byte 1
DB 0x03 ; Vendor assigned function ID (Byte 0)
DB 0x03 ; Vendor assigned function ID (Byte 1)
DB 0x02 ; flags[1] - supports commands at index 0x31
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; IRQ Descriptor
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x22 ; small item, irq tag
DB 0xBC ; one of IRQ2/9, IRQ3, IRQ4, IRQ5
DB 0x00 ; none supported
;
DB 0x301 ; small item, start dependent function 0
DB 0x00
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; I/O Descriptors
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x4B7 ; I/O descriptor tag - P388AR
DB 0x00 ; board does not decode the full 16-bit ISA addr
DB 0x88 ; min base addr 0x388
DB 0x03
DB 0x88 ; max base addr 0x388
DB 0x03
DB 0x02 ; alignment
DB 0x02 ; 2 ports
;
DB 0x301 ; small item, start dependent function 1
DB 0x02
;
DB 0x47 ; I/O descriptor tag - P388AR
DB 0x00 ; board does not decode the full 16-bit ISA addr
DB 0x08 ; min base addr 0x208
DB 0x02
DB 0xC8 ; max base addr 0x3C8
DB 0x03
DB 0x40 ; alignment
DB 0x02 ; 2 ports
;
DB 0x38 ; end dependent function tag
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; MPU401Emulation
; Logical Dev ID
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x15 ; small item, external logical dev tag
DB 0x04 ; Vendor ID Byte 0
DB 0x96 ; Vendor ID Byte 1
DB 0x00 ; Vendor assigned function ID (Byte 0)
DB 0x04 ; Vendor assigned function ID (Byte 1)
DB 0x02 ; flags[1] - supports commands at index 0x31
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; IRQ Descriptor
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x22 ; small item, irq tag
DB 0xBC ; IRQ2/9, IRQ3, IRQ4, IRQ5 and IRQ7 supported
DB 0x00 ; none supported
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; I/O Descriptors
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x47 ; I/O descriptor tag - P401AR
DB 0x00 ; board does not decode the full 16-bit ISA addr
DB 0x00 ; min base addr 0x300
DB 0x03
DB 0x30 ; max base addr 0x330
DB 0x03
DB 0x10 ; alignment
DB 0x02 ; 2 ports
;
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
; End Tag
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
DB 0x79 ; end tag
DB 0x00 ; checksum - calculated on all above bytes

��
�

�PAGE �

�PAGE �5122113108�
� DATE \l �1/26/966/15/951/3/90�	The InterWave Driver Developer’s Kit AMD CONFIDENTIAL

�PAGE \# "'Page: '#'�'" ��

